Article (Scientific journals)
A multi-scale cardiovascular system model can account for the load-dependence of the end-systolic pressure-volume relationship.
Pironet, Antoine; Desaive, Thomas; Kosta, Sarah et al.
2013In BioMedical Engineering OnLine, 12 (1), p. 8
Peer Reviewed verified by ORBi
 

Files


Full Text
1475-925X-12-8.pdf
Author postprint (554.05 kB)
Download

All documents in ORBi are protected by a user license.

Send to



Details



Keywords :
End-systolic pressure-volume relationship; Time-varying elastance; Cardiovascular system modeling
Abstract :
[en] ABSTRACT: BACKGROUND: The end-systolic pressure-volume relationship is often considered as a load-independent property of the heart and, for this reason, is widely used as an index of ventricular contractility. However, many criticisms have been expressed against this index and the underlying time-varying elastance theory: first, it does not consider the phenomena underlying contraction and second, the end-systolic pressure volume relationship has been experimentally shown to be load-dependent. METHODS: In place of the time-varying elastance theory, a microscopic model of sarcomere contraction is used to infer the pressure generated by the contraction of the left ventricle, considered as a spherical assembling of sarcomere units. The left ventricle model is inserted into a closed-loop model of the cardiovascular system. Finally, parameters of the modified cardiovascular system model are identified to reproduce the hemodynamics of a normal dog. RESULTS: Experiments that have proven the limitations of the time-varying elastance theory are reproduced with our model: (1) preload reductions, (2) afterload increases, (3) the same experiments with increased ventricular contractility, (4) isovolumic contractions and (5) flow-clamps. All experiments simulated with the model generate different end-systolic pressure-volume relationships, showing that this relationship is actually load-dependent. Furthermore, we show that the results of our simulations are in good agreement with experiments. CONCLUSIONS: We implemented a multi-scale model of the cardiovascular system, in which ventricular contraction is described by a detailed sarcomere model. Using this model, we successfully reproduced a number of experiments that have shown the failing points of the time-varying elastance theory. In particular, the developed multi-scale model of the cardiovascular system can capture the load-dependence of the end-systolic pressure-volume relationship.
Disciplines :
Engineering, computing & technology: Multidisciplinary, general & others
Cardiovascular & respiratory systems
Author, co-author :
Pironet, Antoine ;  Université de Liège - ULiège > Département d'astrophys., géophysique et océanographie (AGO) > Thermodynamique des phénomènes irréversibles
Desaive, Thomas  ;  Université de Liège - ULiège > Département d'astrophys., géophysique et océanographie (AGO) > Thermodynamique des phénomènes irréversibles
Kosta, Sarah ;  Université de Liège - ULiège > Département d'astrophys., géophysique et océanographie (AGO) > Thermodynamique des phénomènes irréversibles
Lucas, Alexandra
Paeme, Sabine ;  Université de Liège - ULiège > Département d'astrophys., géophysique et océanographie (AGO) > Thermodynamique des phénomènes irréversibles
Collet, Arnaud ;  Université de Liège - ULiège > Département d'astrophys., géophysique et océanographie (AGO) > Thermodynamique des phénomènes irréversibles
Pretty, Christopher ;  Université de Liège - ULiège > Département d'astrophys., géophysique et océanographie (AGO) > Thermodynamique des phénomènes irréversibles
Kolh, Philippe  ;  Université de Liège - ULiège > Département des sciences biomédicales et précliniques > Biochimie et physiologie générales, humaines et path.
Dauby, Pierre  ;  Université de Liège - ULiège > Département d'astrophys., géophysique et océanographie (AGO) > Thermodynamique des phénomènes irréversibles
Language :
English
Title :
A multi-scale cardiovascular system model can account for the load-dependence of the end-systolic pressure-volume relationship.
Publication date :
2013
Journal title :
BioMedical Engineering OnLine
eISSN :
1475-925X
Publisher :
BioMed Central, London, United Kingdom
Volume :
12
Issue :
1
Pages :
8
Peer reviewed :
Peer Reviewed verified by ORBi
Available on ORBi :
since 04 February 2013

Statistics


Number of views
141 (62 by ULiège)
Number of downloads
259 (32 by ULiège)

Scopus citations®
 
25
Scopus citations®
without self-citations
17
OpenCitations
 
19

Bibliography


Similar publications



Contact ORBi