Article (Scientific journals)
Whole-cell based hybrid materials for green energy production, environmental remediation and smart cell-therapy
Léonard, Alexandre; Dandoy, Philippe; Danloy, Emeric et al.
2011In Chemical Society Reviews, 40 (2), p. 860-885
Peer Reviewed verified by ORBi
 

Files


Full Text
Chem Soc Rev 2011.pdf
Publisher postprint (5.85 MB)
Request a copy

All documents in ORBi are protected by a user license.

Send to



Details



Keywords :
Whole cell immobilization; Encapsulation; Hybrid materials; Porous silica; Environmental Remediation; Green energy production; Cell therapy; Photosynthesis; Biocompatibility
Abstract :
[en] This critical review highlights the advances that have been made over recent years in the domain of whole-cell immobilisation and encapsulation for applications relating to the environment and human health, particularly focusing on examples of photosynthetic plant cells, bacteria and algae as well as animal cells. Evidence that encapsulated photosynthetic cells remain active in terms of CO 2 sequestration and biotransformation (solar driven conversion of CO2 into biofuels, drugs, fine chemicals etc.), coupled with the most recent advances made in the field of cell therapy, reveals the need to develop novel devices based on the preservation of living cells within abiotic porous frameworks. This review shall corroborate this statement by selecting precise examples that unambiguously demonstrate the necessity and the benefits of such smart materials. As will be described, the handling and exploitation of photosynthetic cells are enhanced by entrapment or encapsulation since the cells are physically separated from the liquid medium, thereby facilitating the recovery of the metabolites produced. In the case of animal cells, their encapsulation within a matrix is essential in order to create a physical barrier that can protect the cells auto-immune defenders upon implantation into a living body. For these two research axes, the key parameters that have to be kept in mind when designing hybrid materials will be identified, concentrating on essential aspects such as biocompatibility, mechanical strength and controlled porosity (264 references). © 2011 The Royal Society of Chemistry.
Disciplines :
Chemistry
Biotechnology
Author, co-author :
Léonard, Alexandre  ;  Facultés Universitaires Notre-Dame de la Paix - Namur - FUNDP > Chimie > Chimie des Matériaux Inorganiques
Dandoy, Philippe;  Facultés Universitaires Notre-Dame de la Paix - Namur - FUNDP > Chimie > Chimie des Matériaux Inorganiques
Danloy, Emeric;  Facultés Universitaires Notre-Dame de la Paix - Namur - FUNDP > Chimie > Chimie des Matériaux Inorganiques
Leroux, Gregory;  Facultés Universitaires Notre-Dame de la Paix - Namur - FUNDP > Chimie > Chimie des Matériaux Inorganiques
Meunier, Christophe F;  Facultés Universitaires Notre-Dame de la Paix - Namur - FUNDP > Chimie > Chimie des Matériaux Inorganiques
Rooke, Joanna C;  Facultés Universitaires Notre-Dame de la Paix - Namur - FUNDP > Chimie > Chimie des Matériaux Inorganiques
Su, Bao-Lian;  Facultés Universitaires Notre-Dame de la Paix - Namur - FUNDP > Chimie > Chimie des Matériaux Inorganiques
Language :
English
Title :
Whole-cell based hybrid materials for green energy production, environmental remediation and smart cell-therapy
Publication date :
2011
Journal title :
Chemical Society Reviews
ISSN :
0306-0012
eISSN :
1460-4744
Publisher :
Royal Society of Chemistry, United Kingdom
Volume :
40
Issue :
2
Pages :
860-885
Peer reviewed :
Peer Reviewed verified by ORBi
Available on ORBi :
since 08 January 2013

Statistics


Number of views
96 (9 by ULiège)
Number of downloads
1 (1 by ULiège)

Scopus citations®
 
108
Scopus citations®
without self-citations
93
OpenCitations
 
110

Bibliography


Similar publications



Contact ORBi