Reference : About automatic learning for advanced sensing, monitoring and control of electric pow...
Scientific congresses and symposiums : Paper published in a book
Engineering, computing & technology : Electrical & electronics engineering
Engineering, computing & technology : Computer science
http://hdl.handle.net/2268/13446
About automatic learning for advanced sensing, monitoring and control of electric power systems
English
Wehenkel, Louis mailto [Université de Liège - ULg > Dép. d'électric., électron. et informat. (Inst.Montefiore) > Systèmes et modélisation >]
Glavic, Mevludin [ > > ]
Geurts, Pierre mailto [Université de Liège - ULg > Dép. d'électric., électron. et informat. (Inst.Montefiore) > Systèmes et modélisation >]
Ernst, Damien mailto [Université de Liège - ULg > Dép. d'électric., électron. et informat. (Inst.Montefiore) > Systèmes et modélisation >]
2006
Proceedings of the Second Carnegie Mellon Conference in Electric Power Systems: Monitoring, Sensing, Software and its Valuation for the Changing electric Power Industry
Yes
No
International
Second Carnegie Mellon Conference in Electric Power Systems: Monitoring, Sensing, Software and its Valuation for the Changing electric Power Industry
January 2006
Pittsburgh
USA
[en] automatic learning ; sensing ; monitoring
[fr] control ; electric power systems
[en] The paper considers the possible uses of automatic learning for improving power system performance by software methodologies. Automatic learning per se is first reviewed and recent developements of the field are highlighted. Then the authors’ views of its main actual or potential applications related to power system operation and control are described, and in each application present status and needs for further developments are discussed.
Fonds de la Recherche Scientifique (Communauté française de Belgique) - F.R.S.-FNRS
Researchers ; Professionals
http://hdl.handle.net/2268/13446

File(s) associated to this reference

Fulltext file(s):

FileCommentaryVersionSizeAccess
Open access
ALPS_WEHENKEL_etal.pdfPublisher postprint81.25 kBView/Open

Bookmark and Share SFX Query

All documents in ORBi are protected by a user license.