Reference : Inversion of multi-temporal geoelectrical field data sets: insights on noise characteriz...
Scientific congresses and symposiums : Poster
Engineering, computing & technology : Geological, petroleum & mining engineering
http://hdl.handle.net/2268/133925
Inversion of multi-temporal geoelectrical field data sets: insights on noise characterization and regularization
English
Nguyen, Frédéric mailto [Université de Liège - ULg > Département Argenco : Secteur GEO3 > Géophysique appliquée >]
Kemna, Andreas [Universität Bonn > > > >]
Robert, Tanguy [Université de Liège - ULg > Département Argenco : Secteur GEO3 > Géophysique appliquée >]
Hermans, Thomas mailto [Université de Liège - ULg > Département Argenco : Secteur GEO3 > Géophysique appliquée >]
Caterina, David mailto [Université de Liège - ULg > Département Argenco : Secteur GEO3 > Géophysique appliquée >]
Flores Orozco, Adrian [Universität Bonn > > > >]
11-Jul-2012
Yes
No
International
SEG-AGU 2012 Hydrogeophysics Workshop
July 8, 2012 to July 11, 2012
SEG - AGU
Boise
ID
[en] Inversion ; Time-lapse ; noise
[en] Inversion of geoelectrical time-lapse data sets is increasingly growing as monitoring systems are being used in more applications such as seawater intrusion, landslides, remediation of contaminated sites, landfill operation, shallow geothermal systems, or management of water resources. To date, several inversion strategies exist for taking into account the temporal dimension of the data. The most used nowadays are the independent inversion of multi-temporal data sets, the difference inversion, the temporally-constrained inversion, and the more recent process-based inversion. However, difference inversion schemes generally assume that part of the noise contained in the data cancels out when working with temporal data differences. Temporally-constrained inversion on the other hand assumes that the changes are localized and minor. Process-based inversion requires a more advanced knowledge of the system prior the inversion.
In this study we demonstrate that the resolution of the time-lapse inversion scheme is mostly dependent on the quantification of the temporal behavior of the data error, on the resolution of the model-dependent pattern of the survey, and not on the regularization strategy. Our study is based on the imaging results of different data sets with different time and spatial scales, and with different degrees of geological complexity and resistivity contrast, The considered sites are a shallow sandy aquifer and a fractured hard rock aquifer where tracer experiments were performed and monitored using surface arrays. The two studied transport processes are advection, with velocities on the order of 10 m/hour and slower advection/diffusion processes. The strongest improvements were brought by using the data difference and a quantitative estimation of the data error. We found in particular a dependence of the time-lapse data error to the measured resistance (i.e., signal-to-noise-ratio), permitting to formulate an error model to describe the data error present in time-lapse data sets. We used minimum gradient support regularization to invert for model changes with enhanced contrast and found this technique more suited to time-lapse studies than for static images. Noise characterization and error models appear therefore as essential and the most impacting for a successful inversion both for static and time-lapse data whereas different spatio-temporal regularization techniques allowed to decrease artefacts but needs to be coherent with the process.
Researchers ; Professionals
http://hdl.handle.net/2268/133925

There is no file associated with this reference.

Bookmark and Share SFX Query

All documents in ORBi are protected by a user license.