Reference : Effect of high-resolution spatial soil moisture variability on simulated runoff respo...
Scientific journals : Article
Physical, chemical, mathematical & earth Sciences : Earth sciences & physical geography
http://hdl.handle.net/2268/133331
Effect of high-resolution spatial soil moisture variability on simulated runoff response using a distributed hydrologic model
English
Minet, Julien mailto [Université Catholique de Louvain - UCL > Earth and Life Institute > > >]
Laloy, E. [Université Catholique de Louvain - UCL > Earth and Life Institute > > >]
Lambot, S. [Université Catholique de Louvain - UCL > Earth and Life Institute > > >]
Vanclooster, M. [Université Catholique de Louvain - UCL > Earth and Life Institute > > >]
2011
Hydrology & Earth System Sciences
15
1323-1338
Yes (verified by ORBi)
International
1027-5606
[en] Ground Penetrating Radar ; Soil moisture ; runoff
[en] The importance of the spatial variability of antecedent soil moisture conditions on runoff response is widely acknowledged in hillslope hydrology. Using a distributed hydrologic model, this paper aims at investigating the effects of soil moisture spatial variability on runoff in various field conditions and at finding the structure of the soil moisture pattern that approaches the measured soil moisture pattern in terms of field scale runoff. High spatial resolution soil moisture was surveyed in ten different field campaigns using a proximal ground penetrating radar (GPR) mounted on a mobile platform. Based on these soil moisture measurements, seven scenarios of spatial structures of antecedent soil moisture were used and linked with a field scale distributed hydrological model to simulate field scale runoff. Accounting for spatial variability of soil moisture resulted in higher predicted field scale runoff as compared to the case where soil moisture was kept constant. The ranges of possible hydrographs were delineated by the extreme scenarios where soil moisture was directly and inversely modelled according to the topographic wetness index (TWI). These behaviours could be explained by the sizes and relative locations of runoff contributing areas, knowing that runoff was generated by infiltration excess over a certain soil moisture threshold. The most efficient scenario for modeling the within field spatial structure of soil moisture appeared to be when soil moisture is directly arranged according to the TWI, especially when measured soil moisture and TWI were correlated. The novelty of this work is to benefit from a large set of high-resolution soil moisture measurements allowing to model effectively the within field distribution of soil moisture and its impact on the field scale hydrograph. These observations contributed to the current knowledge of the impact of antecedent soil moisture spatial variability on the field scale runoff.
BELSPO
HYDRASENS
Researchers ; Students
http://hdl.handle.net/2268/133331
10.5194/hess-15-1323-2011

File(s) associated to this reference

Fulltext file(s):

FileCommentaryVersionSizeAccess
Open access
Minet_HESS_2011.pdfPublisher postprint1.11 MBView/Open

Bookmark and Share SFX Query

All documents in ORBi are protected by a user license.