Reference : Accurate h-Conform Finite Element Model of Multiply Connected Thin Regions via a Subp...
Scientific congresses and symposiums : Paper published in a book
Engineering, computing & technology : Electrical & electronics engineering
http://hdl.handle.net/2268/133173
Accurate h-Conform Finite Element Model of Multiply Connected Thin Regions via a Subproblem Method
English
Dang, Quoc Vuong [Université de Liège - ULg > Dép. d'électric., électron. et informat. (Inst.Montefiore) > Applied and Computational Electromagnetics (ACE) >]
Dular, Patrick mailto [Université de Liège - ULg > Dép. d'électric., électron. et informat. (Inst.Montefiore) > Applied and Computational Electromagnetics (ACE) >]
Vazquez Sabariego, Ruth mailto [Université de Liège - ULg > Dép. d'électric., électron. et informat. (Inst.Montefiore) > Applied and Computational Electromagnetics (ACE) >]
Krähenbühl, Laurent mailto [Université de Lyon, École Centrale de Lyon > Laboratoire Ampère (CNRS UMR5005) > > >]
Nov-2012
Proceedings of the 15th Biennial IEEE Conference on Electromagnetic Field Computation (CEFC2012)
Yes
No
International
15th Biennial IEEE Conference on Electromagnetic Field Computation (CEFC2012)
November 11–14, 2012
IEEE
Oita
Japan
[en] sub-problem method ; thin shell method ; finite elements
[en] A subproblem method for solving eddy current finite element is developed to correct the inaccuracies near edges and corners arising from thin shell models. Such models replace thin volume regions by surfaces but neglect border effects in the vicinity of their edges and corners. A thin shell solution, performed by a simplified mesh near the thin structures, serves as a source of a correction problem consisting of the actual volume thin regions alone and concentrating the meshing effort on the thin regions. The general case of multiply connected thin regions is considered.
http://hdl.handle.net/2268/133173

File(s) associated to this reference

Fulltext file(s):

FileCommentaryVersionSizeAccess
Restricted access
vuong_cefc2012_abstract.pdfAuthor preprint462.3 kBRequest copy

Bookmark and Share SFX Query

All documents in ORBi are protected by a user license.