Reference : Retrievals of ethane from ground-based high-resolution FTIR solar observations with upda...
Scientific congresses and symposiums : Poster
Physical, chemical, mathematical & earth Sciences : Earth sciences & physical geography
http://hdl.handle.net/2268/129289
Retrievals of ethane from ground-based high-resolution FTIR solar observations with updated line parameters: determination of the optimum strategy for the Jungfraujoch station.
English
Bader, Whitney mailto [Université de Liège - ULg > Département d'astrophys., géophysique et océanographie (AGO) > Groupe infra-rouge de phys. atmosph. et solaire (GIRPAS) >]
Perrin, Agnès []
Jacquemart, David []
Harrison, Jeremy J. []
Toon, Geoffroy C. []
Sudo, Kengo []
Søvde, Ole Amund []
Demoulin, Philippe [Université de Liège - ULg > Département d'astrophys., géophysique et océanographie (AGO) > Groupe infra-rouge de phys. atmosph. et solaire (GIRPAS) >]
Servais, Christian [Université de Liège - ULg > Département d'astrophys., géophysique et océanographie (AGO) > Groupe infra-rouge de phys. atmosph. et solaire (GIRPAS) >]
Mahieu, Emmanuel [Université de Liège - ULg > Département d'astrophys., géophysique et océanographie (AGO) > Groupe infra-rouge de phys. atmosph. et solaire (GIRPAS) >]
Aug-2012
A0
No
No
International
11th ASA Conference (united with 12th HITRAN Conference)
29-31 Août 2012
Université de Reims
Reims
France
[en] Jungfraujoch ; Atmosphere ; Ethane ; infrared spectroscopy ; Trend
[en] Ethane (C2H6) is the most abundant Non-Methane HydroCarbon (NMHC) in the Earth’s atmosphere, with a lifetime of approximately 2 months. C2H6 has both anthropogenic and natural emission sources such as biomass burning, natural gas loss and biofuel consumption.
The retrieval of ethane from ground-based infrared spectra is challenging. Indeed, ethane has a complicated spectrum with many interacting vibrational modes and the current state of ethane parameters in HITRAN (see http://www.hitran.com) was rather unsatisfactory in the 3 μm region. In fact, PQ branches outside the 2973–3001 cm-1 range are not included in HITRAN, and most P and R structures are missing.
New ethane absorption cross sections recorded at the Molecular Spectroscopy Facility of the Rutherford Appleton Laboratory (Harrison et al., 2010) are used in our retrievals. Pseudoline parameters fitted to these ethane spectra have been combined with HITRAN 2004 line parameters (including all the 2006 updates) for all other species encompassed in the selected microwindows. We evaluated the impact on spectral residuals induced by the update of two O3 lines (encompassed in the PQ3 µ-window) corrected by P. Chelin (LPMA, Paris, France). We also quantified the improvement brought by the update of the line positions and intensities of methyl chloride (CH3Cl) in the 3.4 µm region (Bray et al., 2011). The ethane a priori volume mixing ratio (VMR) profile and associated covariance are based on synthetic data from CHASER 3-D chemical transport model (CTM).
In this contribution, we will present updated ethane (total) column retrievals, using the SFIT-2 algorithm (v3.91) and high-resolution Fourier Transform Infrared (FTIR) solar absorption observations recorded with a Bruker 120HR instrument, at the high altitude research station of the Jungfraujoch (46.5°N, 8°E, 3580 m asl), within the framework of the Network for the Detection of Atmospheric Composition Change (NDACC, visit http://www.ndacc.org). Comparisons with synthetic data produced by two chemical transport models (CHASER and the one of the University of Oslo) will also be presented and analyzed, aiming at the determination and interpretation of long-term trends and interannual variations of ethane at Northern mid-latitudes.
Researchers ; Professionals ; Students ; General public ; Others
http://hdl.handle.net/2268/129289

File(s) associated to this reference

Fulltext file(s):

FileCommentaryVersionSizeAccess
Open access
ASA-Poster-portrait3-2.pdfAuthor postprint5.17 MBView/Open

Bookmark and Share SFX Query

All documents in ORBi are protected by a user license.