Reference : Understanding of the Venus upper atmosphere dynamics with O2(a1 ) Venus Express obser...
Scientific congresses and symposiums : Poster
Physical, chemical, mathematical & earth Sciences : Space science, astronomy & astrophysics
http://hdl.handle.net/2268/128334
Understanding of the Venus upper atmosphere dynamics with O2(a1 ) Venus Express observations
English
Soret, Lauriane mailto [Université de Liège - ULg > Département d'astrophys., géophysique et océanographie (AGO) > Physique des atmosphères et des environnements planétaires >]
Gérard, Jean-Claude mailto [Université de Liège - ULg > Département d'astrophys., géophysique et océanographie (AGO) > Département d'astrophys., géophysique et océanographie (AGO) >]
Piccioni, Giuseppe []
Drossart, Pierre []
Apr-2012
A0
No
No
International
EGU
du 23 avril 2012 au 27 avril 2012
Vienne
Autriche
[en] Venus ; oxygen ; nightglow
[en] The O2(a1 ) nightglow emission at 1.27 m may be used as a tracer of the dynamics prevailing in the Venusian upper mesosphere. This emission has thus been observed with ground-based telescopes and from space with instruments such as VIRTIS on board Venus Express. Observations have shown that the emission maximum is statistically located close to the antisolar point at 96 km. As originally suggested by Connes et al. (1979), such
an emission results from the production of oxygen atoms on the Venus dayside by photodissociation and electron impact dissociation of CO2 and CO, which are then transported to the nightside by the subsolar to antisolar general circulation, where they recombine to create excited O2(a1 ) molecules. Their radiative deexcitation produces the O2(a1 ) nightglow with a maximum near the antisolar point. However, VIRTIS observations indicate that the O2(a1 ) nightglow emission is highly variable, both in intensity and location. Actually, when considering individual observations, the patch of bright emission is rarely located at the antisolar point and the brighter area around this point is the result of statics accumulation. Also, when considering several individual observations acquired in a short period of time, it is possible to follow an individual emission patch and to deduce its displacement and its brightness variation due to activation or deactivation. In this study, we analyze several sequences of VIRTIS observations in order to understand the Venus upper mesosphere dynamics.We show that the intensity can vary by several megaRayleighs in a couple of hours with effective lifetimes on the order of several hours. The horizontal motion of the spots leads to the conclusion that winds in the 95-100 km region are in the range of 25 to 150 m s-1, in good agreement with the study by Hueso et al. (2008).
Researchers ; Professionals
http://hdl.handle.net/2268/128334

File(s) associated to this reference

Fulltext file(s):

FileCommentaryVersionSizeAccess
Open access
EGU2012-7574.pdfPublisher postprint48.11 kBView/Open

Bookmark and Share SFX Query

All documents in ORBi are protected by a user license.