Reference : Coordinated motion design on Lie groups
Scientific journals : Article
Engineering, computing & technology : Multidisciplinary, general & others
http://hdl.handle.net/2268/12824
Coordinated motion design on Lie groups
English
Sarlette, Alain mailto [Université de Liège - ULg > Dép. d'électric., électron. et informat. (Inst.Montefiore) > Systèmes et modélisation >]
Bonnabel, Silvere mailto [Mines ParisTech > Centre de robotique > > >]
Sepulchre, Rodolphe mailto [Université de Liège - ULg > Dép. d'électric., électron. et informat. (Inst.Montefiore) > Systèmes et modélisation >]
May-2010
IEEE Transactions on Automatic Control
IEEE
55
5
1047-1058
Yes (verified by ORBi)
International
0018-9286
Piscataway
NJ
[en] Cooperative systems ; Distributed control ; Motion planning ; Lie groups ; Geometric control
[en] The present paper proposes a unified geometric framework for coordinated motion on Lie groups. It first gives a general problem formulation and analyzes ensuing conditions for coordinated motion. Then, it introduces a precise method to design control laws in fully actuated and underactuated settings with simple integrator dynamics. It thereby shows that coordination can be studied in a systematic way once the Lie group geometry of the configuration space is well characterized. Applying the proposed general methodology to particular examples allows to retrieve control laws that have been proposed in the literature on intuitive grounds. A link with Brockett's double bracket flows is also made. The concepts are illustrated on SO(3) , SE(2) and SE(3).
Systems and Modeling
Fonds de la Recherche Scientifique (Communauté française de Belgique) - F.R.S.-FNRS
http://hdl.handle.net/2268/12824

File(s) associated to this reference

Fulltext file(s):

FileCommentaryVersionSizeAccess
Open access
0_OfficialRelease.pdfPublisher postprint603.83 kBView/Open

Bookmark and Share SFX Query

All documents in ORBi are protected by a user license.