Reference : Classification Trees based on infrared spectroscopic data to discriminate between gen...
Scientific congresses and symposiums : Poster
Human health sciences : Pharmacy, pharmacology & toxicology
Classification Trees based on infrared spectroscopic data to discriminate between genuine and counterfeit medicines.
Deconinck, Eric []
Sacre, Pierre-Yves mailto [Université de Liège - ULg > Département de pharmacie > Chimie analytique >]
Coomans, Danny []
De Beer, Jacques []
Chemometrics in Analytical Chemistry (CAC 2012)
du 25 juin 2012 au 29 juin 2012
[en] Due to the extension of the internet, counterfeit drugs represent a growing threat for public health in
the developing countries but also more and more in the industrial world. In literature several
analytical techniques were applied in order to discriminate between genuine and counterfeit
medecines. One thing all these techniques have in common is that they generate a huge amount of
data, which is often difficult to interpret in order to see differences between the different samples and
to determine the cause of the differences. The majority of the authors make use of explorative
chemometric tools to visualise the differences in the data obtained for the different samples. Even if
some of the applied methods could be able to give a model with predictive ability, only a few authors
created a model able to predict if a sample is counterfeit or not.
Classification trees built with the Classification And Regression Tree algorithm were evaluated for
modelling infrared spectroscopic data in order to discriminate between genuine and counterfeit drug
samples and to classify counterfeit samples in different classes following the RIVM classification
Models were built for two data sets consisting of the Fourrier Transformed Infrared spectra, the Near
Infrared spectra and the Raman spectra for genuine and counterfeit samples of respectively Viagra®
and Cialis®.
Easy interpretable models were obtained for both models. The models were validated for their
descriptive and predictive properties. The predictive properties were evaluated using both cross
validation as an external validation set. The obtained models for both data sets showed a 100%
correct classification for the discrimination between genuine and counterfeit samples and 83.3% and
100% correct classification for the counterfeit samples for the Viagra® and the Cialis® data set

File(s) associated to this reference

Fulltext file(s):

Open access
abstract poster cac2012.docxAuthor preprint13.18 kBView/Open

Bookmark and Share SFX Query

All documents in ORBi are protected by a user license.