Reference : Microstructural degeneracy associated with a two-point correlation function and its i... |

Scientific journals : Article | |||

Physical, chemical, mathematical & earth Sciences : Physics | |||

http://hdl.handle.net/2268/124897 | |||

Microstructural degeneracy associated with a two-point correlation function and its information content | |

English | |

Gommes, Cédric [Université de Liège - ULg > Département de chimie appliquée > Génie chimique - Génie catalytique >] | |

Jiao, Yang [Princeton University > > > >] | |

Torquato, Salvatore [Princeton University > > > >] | |

2012 | |

Physical Review. E : Statistical, Nonlinear, and Soft Matter Physics | |

American Physical Society | |

85 | |

051140 | |

Yes (verified by ORBi) | |

International | |

1539-3755 | |

1550-2376 | |

College Park | |

MD | |

[en] Correlation Function ; Reconstruction ; Degeneracy | |

[en] A two-point correlation function provides a crucial yet an incomplete characterization of a microstructure because distinctly differentmicrostructures may have the same correlation function. In an earlier Letter [Gommes, Jiao, and Torquato, Phys. Rev. Lett. 108, 080601 (2012)], we addressed the microstructural degeneracy question: What is the number of microstructures compatible with a specified correlation function? We computed this degeneracy, i.e., configurational entropy, in the framework of reconstruction methods, which enabled us to
map the problem to the determination of ground-state degeneracies. Here, we provide a more comprehensive presentation of the methodology and analyses, as well as additional results. Since the configuration space of a reconstruction problem is a hypercube on which a Hamming distance is defined, we can calculate analytically the energy profile of any reconstruction problem, corresponding to the average energy of allmicrostructures at a given Hamming distance from a ground state. The steepness of the energy profile is a measure of the roughness of the energy landscape associated with the reconstruction problem, which can be used as a proxy for the ground-state degeneracy. The relationship between this roughness metric and the ground-state degeneracy is calibrated using a Monte Carlo algorithm for determining the ground-state degeneracy of a variety of microstructures, including realizations of hard disks and Poisson point processes at various densities as well as thosewith known degeneracies (e.g., single disks of various sizes and a particular crystalline microstructure). We show that our results can be expressed in terms of the information content of the two-point correlation functions. From this perspective, the a priori condition for a reconstruction to be accurate is that the information content, expressed in bits, should be comparable to the number of pixels in the unknown microstructure. We provide a formula to calculate the information content of any two-point correlation function, which makes our results broadly applicable to any field in which correlation functions are employed. | |

Fonds de la Recherche Scientifique (Communauté française de Belgique) - F.R.S.-FNRS | |

http://hdl.handle.net/2268/124897 | |

10.1103/PhysRevE.85.051140 | |

http://pre.aps.org/abstract/PRE/v85/i5/e051140 |

File(s) associated to this reference | ||||||||||||||

| ||||||||||||||

All documents in ORBi are protected by a user license.