Reference : L1-based compression of random forest models
Scientific congresses and symposiums : Paper published in a book
Engineering, computing & technology : Computer science
Engineering, computing & technology : Electrical & electronics engineering
http://hdl.handle.net/2268/124834
L1-based compression of random forest models
English
Joly, Arnaud mailto [Université de Liège - ULg > Dép. d'électric., électron. et informat. (Inst.Montefiore) > Systèmes et modélisation >]
Schnitzler, François mailto [Université de Liège - ULg > Dép. d'électric., électron. et informat. (Inst.Montefiore) > Systèmes et modélisation >]
Geurts, Pierre mailto [Université de Liège - ULg > Dép. d'électric., électron. et informat. (Inst.Montefiore) > Systèmes et modélisation >]
Wehenkel, Louis mailto [Université de Liège - ULg > Dép. d'électric., électron. et informat. (Inst.Montefiore) > Systèmes et modélisation >]
24-May-2012
Proceeding of the 21st Belgian-Dutch Conference on Machine Learning
No
National
978-94-6197-044-2
Belgian-Dutch Conference on Machine Learning & Predictive Modeling for the Life Sciences 2012
from 24 may 2012 to 25 may 2012
Faculty of Bioscience Engineering of Ghent University
Ghent
Belgium
[en] Ensemble of randomized trees ; Pruning ; L1-norm regularization ; LASSO ; Supervised learning ; Machine Learning ; Randomization ; Model reduction ; Decision tree
[en] Random forests are effective supervised learning methods applicable to large-scale datasets. However, the space complexity of tree ensembles, in terms of their total number of nodes, is often prohibitive, specially in the context of problems with very high-dimensional input spaces. We propose to study their compressibility by applying a L1-based regularization to the set of indicator functions defined by all their nodes. We show experimentally that preserving or even improving the model accuracy while significantly reducing its space complexity is indeed possible.
Systèmes et modélisation ; Giga-research
Fonds pour la formation à la Recherche dans l'Industrie et dans l'Agriculture (Communauté française de Belgique) - FRIA ; Biomagnet IUAP network of the Belgian Science Policy Office ; Pascal2 network of excellence of the EC
Researchers ; Professionals
http://hdl.handle.net/2268/124834
http://hdl.handle.net/2268/112824
An extended abstract presenting the article "Joly, A., Schnitzler, F., Geurts, P., & Wehenkel, L. (2012). L1-based compression of random forest models. 20th European Symposium on Artificial Neural Networks." which leads also to an oral presentation.

File(s) associated to this reference

Fulltext file(s):

FileCommentaryVersionSizeAccess
Open access
benelearn2012abstract.pdfAuthor postprint107.56 kBView/Open

Additional material(s):

File Commentary Size Access
Open access
slide.pdfVisual support for the oral presentation791.64 kBView/Open
Private access
speech.odtSpeech of the oral presentation18.27 kBRequest copy

Bookmark and Share SFX Query

All documents in ORBi are protected by a user license.