Reference : Process-evaluation of tropospheric humidity simulated by general circulation models u...
Scientific journals : Article
Physical, chemical, mathematical & earth Sciences : Earth sciences & physical geography
http://hdl.handle.net/2268/123815
Process-evaluation of tropospheric humidity simulated by general circulation models using water vapor isotopologues: 1. Comparison between models and observations
English
Risi, C [ > > ]
Noone, D [ > > ]
Worden, J [ > > ]
Frankenberg, C [ > > ]
Stiller, G [ > > ]
Kiefer, M [ > > ]
Funke, B [ > > ]
Walker, K A [ > > ]
Bernath, P F [ > > ]
Schneider, M [ > > ]
Wunch, D [ > > ]
Sherlock, V [ > > ]
Deutscher, N [ > > ]
Griffith, D [ > > ]
Wennberg, P O [ > > ]
Strong, K [ > > ]
Smale, D [ > > ]
Mahieu, Emmanuel mailto [Université de Liège - ULg > Département d'astrophys., géophysique et océanographie (AGO) > Groupe infra-rouge de phys. atmosph. et solaire (GIRPAS) >]
Barthlott, S [ > > ]
Hase, F [ > > ]
Garcia, O [ > > ]
Notholt, J [ > > ]
Warneke, T [ > > ]
Toon, G C [ > > ]
Sayres, D [ > > ]
Bony, S [ > > ]
Lee, J [ > > ]
Brown, D [ > > ]
Uemura, R [ > > ]
Sturm, C [ > > ]
6-Mar-2012
Journal of Geophysical Research
American Geophysical Union (AGU)
117
D5
D05303
Yes (verified by ORBi)
International
0148-0227
2156-2202
Washington
DC
[en] general circulation models ; process-based evaluation ; relative humidity ; water isotopes
[en] N2 - The goal of this study is to determine how H2O and HDO measurements in water vapor can be used to detect and diagnose biases in the representation of processes controlling tropospheric humidity in atmospheric general circulation models (GCMs). We analyze a large number of isotopic data sets (four satellite, sixteen ground-based remote-sensing, five surface in situ and three aircraft data sets) that are sensitive to different altitudes throughout the free troposphere. Despite significant differences between data sets, we identify some observed HDO/H2O characteristics that are robust across data sets and that can be used to evaluate models. We evaluate the isotopic GCM LMDZ, accounting for the effects of spatiotemporal sampling and instrument sensitivity. We find that LMDZ reproduces the spatial patterns in the lower and mid troposphere remarkably well. However, it underestimates the amplitude of seasonal variations in isotopic composition at all levels in the subtropics and in midlatitudes, and this bias is consistent across all data sets. LMDZ also underestimates the observed meridional isotopic gradient and the contrast between dry and convective tropical regions compared to satellite data sets. Comparison with six other isotope-enabled GCMs from the SWING2 project shows that biases exhibited by LMDZ are common to all models. The SWING2 GCMs show a very large spread in isotopic behavior that is not obviously related to that of humidity, suggesting water vapor isotopic measurements could be used to expose model shortcomings. In a companion paper, the isotopic differences between models are interpreted in terms of biases in the representation of processes controlling humidity.
Researchers ; Professionals ; Students
http://hdl.handle.net/2268/123815
10.1029/2011JD016621
http://dx.doi.org/10.1029/2011JD016621
FP7 ; 256961 - MUSICA - Multi-platform remote sensing of isotopologues for investigating the cycle of atmospheric water

File(s) associated to this reference

Fulltext file(s):

FileCommentaryVersionSizeAccess
Open access
2011JD016621.pdfPublisher postprint1.59 MBView/Open

Bookmark and Share SFX Query

All documents in ORBi are protected by a user license.