Reference : About Generic Properties of "Nowhere Analyticity"
Scientific congresses and symposiums : Unpublished conference
Physical, chemical, mathematical & earth Sciences : Mathematics
http://hdl.handle.net/2268/122885
About Generic Properties of "Nowhere Analyticity"
English
Bastin, Françoise mailto [Université de Liège - ULg > Département de mathématique > Analyse - Analyse fonctionnelle - Ondelettes >]
Nicolay, Samuel mailto [Université de Liège - ULg > Département de mathématique > Analyse - Analyse fonctionnelle - Ondelettes >]
Esser, Céline mailto [Université de Liège - ULg > Département de mathématique > Analyse - Analyse fonctionnelle - Ondelettes >]
8-May-2012
F. Bastin, C. Esser, S. Nicolay, A note about generic properties of "nowhere analyticity", preprint December 2011
No
No
International
Functional Analysis: Applications to Complex Analysis and Partial Differential Equations
du 6 mai au 12 mai 2012
Paweł Domański (Adam Mickiewicz University Poznań), Michael Langenbruch (Carl von Ossietzky Universität Oldenburg)
Poznan (Bedlewo)
Poland
[en] Generic Properties ; Prevalence ; Nowhere Analytic
[en] A infinitely differentiable function f is is analytic at a point x if its Taylor series at this point converges to f on an open neighbourhood of x; if this is not the case, f has a singularity at x. A function with a singularity at each point of the interval is called nowhere analytic on the interval. In this talk, we show that the set of nowhere analytic functions is prevalent in the Frechet space C([0;1]). We get then a deeper result using Gevrey classes.
Fonds de la Recherche Scientifique (Communauté française de Belgique) - F.R.S.-FNRS
http://hdl.handle.net/2268/122885

File(s) associated to this reference

Fulltext file(s):

FileCommentaryVersionSizeAccess
Restricted access
Bedlewo_2012_Prevalence nowhere analytic.pdfAuthor preprint362.37 kBRequest copy

Bookmark and Share SFX Query

All documents in ORBi are protected by a user license.