Article (Scientific journals)
Short-term temperature impact on soil heterotrophic respiration in limed agricultural soil samples
Buysse, Pauline; Goffin, Stéphanie; Carnol, Monique et al.
2012In Biogeochemistry, 112 (1-3), p. 441-455
Peer Reviewed verified by ORBi
 

Files


Full Text
Buysse_Biogeochem_2013.pdf
Publisher postprint (1.34 MB)
Request a copy

All documents in ORBi are protected by a user license.

Send to



Details



Keywords :
soil CO2 flux; temperature; limed agricultural soil; incubation experiment; organic carbon model; short-term
Abstract :
[en] This study sought to investigate the hourly and daily timescale responses of soil CO2 fluxes to temperature in a limed agricultural soil. Observations from different incubation experiments were compared with the results of a model combining biotic (heterotrophic respiration) and abiotic (carbonate weathering) components. Several samples were pre-incubated for 8-9 days at three temperatures (5, 15 and 25°C) and then submitted to short-term temperature cycles (where the temperature was increased from 5 to 35°C in 10°C stages, with each stage being 3 h long). During the temperature cycles (hourly timescale), the soil CO2 fluxes increased significantly with temperature under all pre-incubation temperature treatments. A hysteresis effect and negative fluxes during cooling phases were also systematically observed. At a given hourly timescale temperature, there was a negative relationship of the CO2 fluxes with the pre-incubation temperature. Using the combined model allowed the experimental results to be clearly described, including the negative fluxes and the hysteresis effect, showing the potentially large contribution of abiotic fluxes to total fluxes in limed soils, after short-term temperature changes. The fairly good agreement between the measured and simulated flux results also suggested that the biotic flux temperature sensitivity was probably unaffected by timescale (hourly or daily) or pre-incubation temperature. The negative relationship of the CO2 fluxes with the pre-incubation temperature probably derived from very labile soil carbon depletion, as shown in the simulations. This was not, however, confirmed by soil carbon measurements, which leaves open the possibility of adaptation within the microbial community.
Disciplines :
Earth sciences & physical geography
Author, co-author :
Buysse, Pauline ;  Université de Liège - ULiège > Sciences et technologie de l'environnement > Physique des bio-systèmes
Goffin, Stéphanie ;  Université de Liège - ULiège > Sciences et technologie de l'environnement > Physique des bio-systèmes
Carnol, Monique  ;  Université de Liège - ULiège > Département de Biologie, Ecologie et Evolution > Ecologie végétale et microbienne
Malchair, Sandrine ;  Université de Liège - ULiège > Département de Biologie, Ecologie et Evolution > Ecologie végétale et microbienne
Debacq, Alain ;  Université de Liège - ULiège > Sciences et technologie de l'environnement > Physique des bio-systèmes
Longdoz, Bernard  
Aubinet, Marc ;  Université de Liège - ULiège > Sciences et technologie de l'environnement > Physique des bio-systèmes
Language :
English
Title :
Short-term temperature impact on soil heterotrophic respiration in limed agricultural soil samples
Alternative titles :
[fr] Impacts de la température à court terme sur la respiration hétérotrophe du sol dans des échantillons de sol agricole chaulé.
Publication date :
April 2012
Journal title :
Biogeochemistry
ISSN :
0168-2563
eISSN :
1573-515X
Publisher :
Springer Science & Business Media B.V., Dordrecht, Netherlands
Volume :
112
Issue :
1-3
Pages :
441-455
Peer reviewed :
Peer Reviewed verified by ORBi
Name of the research project :
Modélisation de la respiration de sols agricoles
Funders :
F.R.S.-FNRS - Fonds de la Recherche Scientifique [BE]
Available on ORBi :
since 17 April 2012

Statistics


Number of views
168 (24 by ULiège)
Number of downloads
4 (4 by ULiège)

Scopus citations®
 
14
Scopus citations®
without self-citations
14
OpenCitations
 
9

Bibliography


Similar publications



Contact ORBi