Reference : Carrying capacity of stainless steel columns in the low slenderness range.
Scientific journals : Article
Engineering, computing & technology : Civil engineering
Carrying capacity of stainless steel columns in the low slenderness range.
Rossi, Barbara mailto [Université de Liège - ULg > Département Argenco : Secteur MS2F > Adéquat. struct. aux exig. de fonct.& perfor. techn.-écon. >]
Rasmussen, Kim J.R. [> >]
In press
Journal of Structural Engineering
American Society of Civil Engineers
Yes (verified by ORBi)
[en] Stainless steel ; Thin-walled sections ; Axial compression ; Direct Strength Method ; Design
[en] The strength of thin-walled stainless steel columns has been investigated extensively over the past few years. In European standards, the concept of section classification for determining the cross-section capacity is used. In this system, for Class 4 cross-sections, the Effective Width Method (EWM) must be used to account for the effect of local buckling. Because of the complexity and limitations of this method, other methods have been developed, such as the Direct Strength Method (DSM) for cold-formed thin-walled profiles and the Continuous Strength Method (CSM), initially established for members made of nonlinear metallic materials.
In the CSM, to take advantage of strain hardening, a deformation-based design approach employing a continuous relationship between the cross-sectional slenderness and the cross-sectional deformation capacity is used. To a large extent, the CSM yield accurate predictions, especially in the low slenderness range where the current DSM design procedures for members submitted to pure compression tends to produce conservative predictions, for materials with pronounced strain hardening such as stainless steel alloys. The present paper presents an extension of the traditional DSM which provides accurate design strength predictions in the low slenderness range for stainless steel thin-walled section columns failing by distortional, local and overall buckling. It contains practical information concerning the reference experimental data and draws conclusions about the justification of the proposed analytical formula. The paper is divided into three main parts: the description of the database, the establishment of the design model and a reliability analysis of the method.

File(s) associated to this reference

Fulltext file(s):

Restricted access
JRNSTENG-S-12-00087.pdfAuthor preprint1.44 MBRequest copy

Bookmark and Share SFX Query

All documents in ORBi are protected by a user license.