Article (Scientific journals)
A quantitative study of O stars in NGC 2244 and the Monoceros OB2 association
Martins, F.; Mahy, Laurent; Hillier, D. J. et al.
2012In Astronomy and Astrophysics, 538, p. 39 (15
Peer Reviewed verified by ORBi
 

Files


Full Text
ngc2244.pdf
Publisher postprint (1.98 MB)
Download

All documents in ORBi are protected by a user license.

Send to



Details



Keywords :
stars: fundamental parameters; stars: winds; outflows; stars: early-type; Hii regions
Abstract :
[en] <BR /> Aims: Our goal is to determine the stellar and wind properties of seven O stars in the cluster NGC 2244 and three O stars in the OB association Mon OB2. These properties give us insight into the mass loss rates of O stars. They allow us to both check the validity of rotational mixing in massive stars and to better understand the effects of the ionizing flux and wind mechanical energy release on the surrounding interstellar medium and its influence on triggered star formation. <BR /> Methods: We collected optical and UV spectra of the target stars that we analyzed by means of atmosphere models computed with the code CMFGEN. The spectra of binary stars were disentangled and the components studied separately. <BR /> Results: All stars have an evolutionary age less than 5 million years, with the most massive stars being among the youngest. Nitrogen surface abundances show no clear relation with projected rotational velocities. Binaries and single stars show the same range of enrichment. This is attributed to the youth and/or wide separation of the binary systems in which the components have not (yet) experienced strong interaction. A clear trend toward greater enrichment in higher luminosity objects is observed, consistent with what evolutionary models with rotation predict for a population of O stars at any given age. We confirm the weakness of winds in late O dwarfs. In general, mass loss rates derived from UV lines are lower than mass loss rates obtained from Hα. The UV mass loss rates are even lower than the single-line driving limit in the latest type dwarfs. These issues are discussed in the context of the structure of massive stars winds. The evolutionary and spectroscopic masses are in agreement above 25 M[SUB]&sun;[/SUB], but the uncertainties are large. Below this threshold, the few late-type O stars studied here indicate that the mass discrepancy still seems to hold. Appendix A is available in electronic form at <A href="http://www.aanda.org">http://www.aanda.org</A>
Disciplines :
Space science, astronomy & astrophysics
Author, co-author :
Martins, F.;  LUPM-UMR 5299, CNRS & Université Montpellier II, Place Eugène Bataillon, 34095, Montpellier Cedex 05, France
Mahy, Laurent ;  Université de Liège - ULiège > Département d'astrophys., géophysique et océanographie (AGO) > Sciences spatiales
Hillier, D. J.;  Department of Physics and Astronomy, University of Pittsburgh, 3941 O'Hara Street, Pittsburgh, PA, 15260, USA
Rauw, Grégor  ;  Université de Liège - ULiège > Département d'astrophys., géophysique et océanographie (AGO) > Sciences spatiales
Language :
English
Title :
A quantitative study of O stars in NGC 2244 and the Monoceros OB2 association
Publication date :
01 February 2012
Journal title :
Astronomy and Astrophysics
ISSN :
0004-6361
eISSN :
1432-0746
Publisher :
EDP Sciences, Les Ulis, France
Volume :
538
Pages :
A39 (15p)
Peer reviewed :
Peer Reviewed verified by ORBi
Commentary :
http://de.arxiv.org/abs/1110.4509
Available on ORBi :
since 03 March 2012

Statistics


Number of views
60 (1 by ULiège)
Number of downloads
158 (1 by ULiège)

Scopus citations®
 
53
Scopus citations®
without self-citations
38
OpenCitations
 
54

Bibliography


Similar publications



Contact ORBi