Reference : Microstructure characterisation of nanocomposite polymeric foams by X-ray microtomography
Scientific congresses and symposiums : Poster
Engineering, computing & technology : Chemical engineering
http://hdl.handle.net/2268/111961
Microstructure characterisation of nanocomposite polymeric foams by X-ray microtomography
English
Plougonven, Erwan [Université de Liège - ULg > Département de chimie appliquée > Génie chimique - Procédés et développement durable >]
Marchot, Pierre mailto [Université de Liège - ULg > Département de chimie appliquée > Département de chimie appliquée >]
Detrembleur, Christophe mailto [Université de Liège - ULg > > Centre d'études et de rech. sur les macromolécules (CERM) >]
Tran, Minh Phuong mailto [Université de Liège - ULg > > Centre d'études et de rech. sur les macromolécules (CERM) >]
Léonard, Angélique mailto [Université de Liège - ULg > Département de chimie appliquée > Génie chimique - Procédés et développement durable >]
21-Sep-2011
A0
No
No
International
4th International Workshop on Process Tomography
from 21-09-2077 to 23-09-2011
International Society for Industrial Process Tomography
Institute of Mechanics, Chinese Academy of Sciences
Chengdu
China
[en] Polymeric foam ; Nanocomposites ; Microtomography ; Autocorrelation
[en] Recent advances in microstructured materials have given rise to many new types of composites that exhibit original and interesting physical properties. For example, a nanocomposite made of carbon nanotubes inside a polymer matrix shows exceptional electromagnetic interference shielding effectiveness when foamed. However, the effective properties of such materials strongly depend on the shape and topology of the microstructural cells. An accurate method for investigating the cellular microstructure is X-ray microtomography (XRµT), for it is non-destructive, and it provides 3D geometric information. Although it cannot be used to observe nanofiller dispersion, it has a strong potential for cell structure characterization.

In order to reduce the need for trial and error for tailoring these materials, our objective is to characterize, using XRµT, two different types of foaming procedures, namely supercritical CO2 batch foaming and freeze drying. As the resolution is limited compared to cell size, we have developed a novel statistical method based on 3D autocorrelation to determine characteristic length and examine anisotropy. We present results for these two types of foams and show the limitations of this method.
Laboratory of Chemical Engineering (LGC), Faculty of Applied Sciences, ULg ; Centre for Education and Research on Macromolecules (CERM), Faculty of Sciences, ULg
Fonds de la Recherche Scientifique (Communauté française de Belgique) - F.R.S.-FNRS
ARC project 09/14-02 - From Imaging to geometrical modelling of complex micro structured materials: Bridging computational engineering and material science
Researchers
http://hdl.handle.net/2268/111961

File(s) associated to this reference

Fulltext file(s):

FileCommentaryVersionSizeAccess
Restricted access
IWPT4_Poster.pdfAuthor postprint1.51 MBRequest copy

Bookmark and Share SFX Query

All documents in ORBi are protected by a user license.