Reference : Genomic structure, promoter analysis and expression of the porcine (Sus scrofa) TLR4 gene.
Scientific journals : Article
Life sciences : Veterinary medicine & animal health
http://hdl.handle.net/2268/108857
Genomic structure, promoter analysis and expression of the porcine (Sus scrofa) TLR4 gene.
English
Thomas, Anne [Université de Liège - ULg > Morphologie et Pathologie > pathologie systémique > >]
Broers, Aurore mailto [Université de Liège - ULg > Département de morphologie et pathologie > Pathologie spéciale et autopsies >]
Vandegaart, Hélène mailto [Université de Liège - ULg > Département des sciences de la vie > GIGA-R : Biologie et génétique moléculaire >]
Desmecht, Daniel mailto [Université de Liège - ULg > Département de morphologie et pathologie > Pathologie spéciale et autopsies >]
Feb-2006
Molecular Immunology
Pergamon-Elsevier Science Ltd
43
6
653-659
Yes (verified by ORBi)
International
0161-5890
Oxford
United Kingdom
[en] TLR4 ; pig ; salmonella
[en] Toll-like receptor 4 (TLR4) is essential for initiating the innate response to lipopolysaccharide (LPS) from Gram-negative bacteria by acting as a signal-transducing receptor. As the pig industry faces a unique array of related pathogens, it is anticipated that the genotype of swine TLR4 could be of crucial importance in future strategies aimed at improving genetic resistance to infectious diseases. In order to help in investigating TLR4 as a candidate disease-resistance gene in pigs, we established its genomic structure and produced sufficient flanking intronic sequences to enable simple PCR amplification of the coding portions of the gene. Expression in different porcine tissues was studied and showed splicing variations in mRNA sequences. The cDNA sequence for poTLR4 contains an open reading frame of 2526bp that codes for 841 aa, 98 and 568bp in the 5'- and 3'-UTRs, respectively. Overall, the general organization of porcine, human, murine, and avian TLR4 genes is quite similar: three exons with the third one very long. A high level of conservation of the size and the sequence, especially for the two last exons and particularly in the sequence corresponding to the LRRs and TIR domain, is observed between species. The important antimicrobial properties of these proteins may account for a conservative selection pressure on these TLR4 coding sequences. Several putative binding sites described in the human and murine promoter of TLR4 genes have been identified in the 5'-flanking region of poTLR4. Conversely, this region lacks a TATA box, consensus initiator sequences, or GC-rich regions. The basic sequence data gathered will allow the establishment of an inventory of naturally occurring variation in porcine TLR4, so that alleles can be tested for disease association studies.
Researchers
http://hdl.handle.net/2268/108857

File(s) associated to this reference

Fulltext file(s):

FileCommentaryVersionSizeAccess
Restricted access
1-s2.0-S016158900500129X-main1.pdfPublisher postprint497.92 kBRequest copy

Bookmark and Share SFX Query

All documents in ORBi are protected by a user license.