Reference : Correlation of phasic muscle strength and corticomotoneuron conduction time in multip...
Scientific journals : Article
Human health sciences : Neurology
http://hdl.handle.net/2268/107340
Correlation of phasic muscle strength and corticomotoneuron conduction time in multiple sclerosis.
English
van der Kamp, W. [> > > >]
MAERTENS DE NOORDHOUT, Alain mailto [Centre Hospitalier Universitaire de Liège - CHU > > Neurologie CHR]
Thompson, P. D. [> > > >]
Rothwell, J. C. [> > > >]
Day, B. L. [> > > >]
Marsden, C. D. [> > > >]
1991
Annals of Neurology
Wiley Liss, Inc.
29
1
6-12
Yes (verified by ORBi)
International
0364-5134
1531-8249
New York
NY
[en] Adult ; Electromyography ; Female ; Hand/physiology ; Humans ; Magnetics ; Male ; Middle Aged ; Motor Cortex/physiology ; Motor Neurons/physiology ; Multiple Sclerosis/physiopathology ; Muscle Contraction/physiology ; Muscles/physiology ; Neural Conduction/physiology ; Reflex, Stretch/physiology ; Time Factors
[en] Central motor conduction times for the adductor pollicis muscle, the twitch force of that muscle to scalp magnetic motor cortex stimulation, and the maximum force of phasic voluntary contraction of the same muscle were measured in 15 patients with multiple sclerosis. Two tests of manual dexterity of the same hand also were studied: the Purdue pegboard test, and the maximal frequency of a scissors movement of the thumb and index finger. The patients had normal strength or minimal weakness of the intrinsic muscles of the hand on clinical examination. The mean central motor conduction times for the adductor pollicis muscle for the patients were longer than normal, the peak twitch force of the adductor pollicis muscle evoked by cortical stimulation and the maximum force of a phasic voluntary contraction of the adductor pollicis muscle were smaller than normal. There were strong correlations between all these measures. Central motor conduction time in the patients was inversely correlated with voluntary phasic force and the twitch force after cortical stimulation. That is, the longer the central motor conduction time, the weaker the force. Prolonged central motor conduction time is likely to be accompanied by conduction block in corticomotoneuron pathways. The correlation of central motor conduction time with voluntary phasic force and the twitch force most likely reflects the degree of conduction block and temporal dispersion rather than delay in conduction per se. These results indicate that objective assessments of phasic muscle strength may reveal correlations with central motor conduction time that are not evident on conventional clinical examination which assesses tonic muscle contraction strength.(ABSTRACT TRUNCATED AT 250 WORDS)
http://hdl.handle.net/2268/107340
10.1002/ana.410290104

File(s) associated to this reference

Fulltext file(s):

FileCommentaryVersionSizeAccess
Restricted access
annals of neurology, 1991, 29.pdfPublisher postprint622.98 kBRequest copy

Bookmark and Share SFX Query

All documents in ORBi are protected by a user license.