Browsing
     by title


0-9 A B C D E F G H I J K L M N O P Q R S T U V W X Y Z

or enter first few letters:   
OK
Full Text
See detailAurorae at Jupiter: a selection of recent results
Bonfond, Bertrand ULg

Scientific conference (2013, December 17)

Detailed reference viewed: 10 (0 ULg)
Full Text
See detailAurorae at Jupiter: Recent Findings
Bonfond, Bertrand ULg

Scientific conference (2013, April 30)

In this seminar I review the recent results concerning the aurora at Jupiter, based on Hubble Space Telescope Far-UV images.

Detailed reference viewed: 17 (5 ULg)
Full Text
Peer Reviewed
See detailThe auroral and ionospheric flow signatures of dual lobe reconnection
Imber, S. M.; Milan, S. E.; Hubert, Benoît ULg

in Annales Geophysicae (2006), 24(11), 3115-3129

We present the first substantial evidence for the occurrence of dual lobe reconnection from ionospheric flows and auroral signatures. The process of dual lobe reconnection refers to an interplanetary ... [more ▼]

We present the first substantial evidence for the occurrence of dual lobe reconnection from ionospheric flows and auroral signatures. The process of dual lobe reconnection refers to an interplanetary magnetic field line reconnecting with lobe field lines in both the northern and southern hemispheres. Two bursts of sunward plasma flow across the noon portion of the open/closed field line boundary (OCB), indicating magnetic flux closure at the dayside, were observed in SuperDARN radar data during a period of strongly northward IMF. The OCB is identified from spacecraft, radar backscatter, and auroral observations. In order for dual lobe reconnection to take place, we estimate that the interplanetary magnetic field clock angle must be within +/- 10 degrees of zero (North). The total flux crossing the OCB during each burst is small (1.8% and 0.6% of the flux contained within the polar cap for the two flows). A brightening of the noon portion of the northern auroral oval was observed as the clock angle passed through zero, and is thought to be due to enhanced precipitating particle fluxes due to the occurrence of reconnection at two locations along the field line. The number of solar wind protons captured by the flux closure process was estimated to be similar to 2.5 x 10(30) (4 tonnes by mass), sufficient to populate the cold, dense plasma sheet observed following this interval. [less ▲]

Detailed reference viewed: 12 (0 ULg)
See detailAuroral and Non-auroral X-ray Emissions from Jupiter: A Comparative View
Bhardwaj, A.; Elsner, R.; Gladstone, R. et al

Poster (2004)

Jovian X-rays can be broadly classified into two categories: (1) "auroral" emission, which is confined to high-latitudes ( ˜>60° ) at both polar regions, and (2) "dayglow" emission, which originates from ... [more ▼]

Jovian X-rays can be broadly classified into two categories: (1) "auroral" emission, which is confined to high-latitudes ( ˜>60° ) at both polar regions, and (2) "dayglow" emission, which originates from the sunlit low-latitude ( ˜<50° ) regions of the disk (hereafter called "disk" emissions). Recent X-ray observations of Jupiter by Chandra and XMM-Newton have shown that these two types of X-ray emission from Jupiter have different morphological, temporal, and spectral characteristics. In particular: 1) contrary to the auroral X-rays, which are concentrated in a spot in the north and in a band that runs half-way across the planet in the south, the low-latitude X-ray disk is almost uniform; 2) unlike the ˜40±20-min periodic oscillations seen in the auroral X-ray emissions, the disk emissions do not show any periodic oscillations; 3) the disk emission is harder and extends to higher energies than the auroral spectrum; and 4) the disk X-ray emission show time variability similar to that seen in solar X-rays. These differences and features imply that the processes producing X-rays are different at these two latitude regions on Jupiter. We will present the details of these and other features that suggest the differences between these two classes of X-ray emissions from Jupiter, and discuss the current scenario of the production mechanism of them. [less ▲]

Detailed reference viewed: 13 (3 ULg)
Full Text
See detailAuroral counterpart of magnet ic dipolarizations in Saturn’s tail
Jackman, Caitriona; Achilleos, Nicholas; Cowley, Stan et al

Poster (2012, September 27)

Following magnetic reconnection in a planetary magnetotail, newly closed field lines can be rapidly accelerated back towards the planet, becoming “dipolarized” in the process. At Saturn, dipolarizations ... [more ▼]

Following magnetic reconnection in a planetary magnetotail, newly closed field lines can be rapidly accelerated back towards the planet, becoming “dipolarized” in the process. At Saturn, dipolarizations are initially identified in magnetometer data by looking for a southward turning of the magnetic field, indicating the transition from a radially stretched configuration to a more dipolar field topology. The highly stretched geometry of the kronian magnetotail lobes gives rise to a tail current which flows eastward (dusk to dawn) in the near equatorial plane across the centre of the tail. During reconnection and associated dipolarization of the field, the inner edge of this tail current can be diverted through the ionosphere, in a situation analogous to the substorm current wedge picture at Earth. We present a picture of the current circuit arising from this tail reconfiguration, and outline the equations which govern the field- current relationship. We show the first in situ example of a dipolarization identified in the Cassini magnetometer data and use this formalism to estimate the ionospheric current density that would arise for this example and the implications for auroral electron acceleration in regions of upward directed field-aligned current. We then present a separate example of data from the Cassini UVIS instrument where we observe small ‘spots’ of auroral emission lying near the main oval; features suggested to be associated with dipolarizations in the tail. In the example shown, such auroral features are the precursor to more intense activity associated with recurrent energisation via particle injections from the tail following reconnection. [less ▲]

Detailed reference viewed: 25 (3 ULg)
Full Text
Peer Reviewed
See detailAuroral counterpart of magnetic field dipolarizations in Saturn’s tail
Jackman, C.M.; Achilleos, N.; Cowley, S.W.H. et al

in Planetary and Space Science (2013)

Detailed reference viewed: 19 (4 ULg)
See detailAuroral counterpart of magnetic field dipolarizations in Saturn's tail
Jackman, C. M.; Achilleos, N.; Bunce, E. J. et al

in American Geophysical Union, Fall Meeting 2011, abstract #SM14A-07 (2011, December 01)

Following magnetic reconnection in a planetary magnetotail, newly closed field lines can be rapidly accelerated back towards the planet, becoming "dipolarized" in the process. At Saturn, dipolarizations ... [more ▼]

Following magnetic reconnection in a planetary magnetotail, newly closed field lines can be rapidly accelerated back towards the planet, becoming "dipolarized" in the process. At Saturn, dipolarizations can be initially identified from the magnetometer data by looking for a southward turning of the magnetic field, indicating the transition from a radially stretched configuration to a more dipolar field topology. The highly stretched geometry of the kronian magnetotail lobes gives rise to a tail current which flows eastward (dusk to dawn) in the near equatorial plane across the centre of the tail. During reconnection and associated dipolarization of the field, the inner edge of this tail current can be diverted through the ionosphere, in a situation analogous to the substorm current wedge picture at Earth [McPherron et al. 1973]. We present a picture of the current circuit arising from this tail reconfiguration, and outline the equations which govern the field-current relationship. We show a number of examples of dipolarizations as identified in the Cassini magnetometer data and use this formalism to calculate limits for the ionospheric current density that would arise for these examples. In addition to the magnetometer data, we also present data from the Cassini VIMS and UVIS instruments which have observed small 'spots' of auroral emission lying near the main oval - features thought to be associated with dipolarizations in the tail. We compare the auroral intensities as predicted from our calculation with the observed spot sizes and intensities. [less ▲]

Detailed reference viewed: 20 (1 ULg)
Full Text
Peer Reviewed
See detailAuroral current systems in Saturn's magnetosphere: comparison of theoretical models with Cassini and HST observations
Cowley, S. W. H.; Arridge, C. S.; Bunce, E. J. et al

in Annales Geophysicae [= ANGEO] (2008), 26(9), 2613-2630

The first simultaneous observations of fields and plasmas in Saturn's high-latitude magnetosphere and UV images of the conjugate auroral oval were obtained by the Cassini spacecraft and the Hubble Space ... [more ▼]

The first simultaneous observations of fields and plasmas in Saturn's high-latitude magnetosphere and UV images of the conjugate auroral oval were obtained by the Cassini spacecraft and the Hubble Space Telescope (HST) in January 2007. These data have shown that the southern auroral oval near noon maps to the dayside cusp boundary between open and closed field lines, associated with a major layer of upward-directed field-aligned current (Bunce et al., 2008). The results thus support earlier theoretical discussion and quantitative modelling of magnetosphere-ionosphere coupling at Saturn (Cowley et al., 2004), that suggests the oval is produced by electron acceleration in the field-aligned current layer required by rotational flow shear between strongly sub-corotating flow on open field lines and near-corotating flow on closed field lines. Here we quantitatively compare these modelling results (the 'CBO' model) with the Cassini-HST data set. The comparison shows good qualitative agreement between model and data, the principal difference being that the model currents are too small by factors of about five, as determined from the magnetic perturbations observed by Cassini. This is suggested to be principally indicative of a more highly conducting summer southern ionosphere than was assumed in the CBO model. A revised model is therefore proposed in which the height-integrated ionospheric Pedersen conductivity is increased by a factor of four from 1 to 4 mho, together with more minor adjustments to the co-latitude of the boundary, the flow shear across it, the width of the current layer, and the properties of the source electrons. It is shown that the revised model agrees well with the combined Cassini-HST data, requiring downward acceleration of outer magnetosphere electrons through a similar to 10 kV potential in the current layer at the open-closed field line boundary to produce an auroral oval of similar to 1 degrees width with UV emission intensities of a few tens of kR. [less ▲]

Detailed reference viewed: 55 (22 ULg)
See detailAuroral emissions of Europa
Grodent, Denis ULg

Conference (2011, June 01)

Detailed reference viewed: 9 (1 ULg)
See detailAuroral emissions of Jupiter and Saturn and satellite footprints
Radioti, Aikaterini ULg

Conference (2014, August)

Detailed reference viewed: 11 (3 ULg)
Full Text
Peer Reviewed
See detailAuroral evidence of a localized magnetic anomaly in Jupiter's northern hemisphere
Grodent, Denis ULg; Bonfond, Bertrand ULg; Gérard, Jean-Claude ULg et al

in Journal of Geophysical Research (2008), 113(A9),

We analyze more than 1000 HST/Advanced Camera for Survey images of the ultraviolet auroral emissions appearing in the northern hemisphere of Jupiter. The auroral footprints of Io, Europa, and Ganymede ... [more ▼]

We analyze more than 1000 HST/Advanced Camera for Survey images of the ultraviolet auroral emissions appearing in the northern hemisphere of Jupiter. The auroral footprints of Io, Europa, and Ganymede form individual footpaths, which are fitted with three reference contours. The satellite footprints provide a convenient mapping between the northern Jovian ionosphere and the equatorial plane in the middle magnetosphere, independent of any magnetic field model. The VIP4 magnetic field model is in relatively good agreement with the observed footprint of Io. However, in the auroral kink sector, between the 80 degrees and 150 degrees System III meridians, the model significantly departs from the observation. One possible way to improve the agreement between the VIP4 model and the observed footprints is to include a magnetic anomaly. We suggest that this anomaly is characterized by a weakening of the surface magnetic field in the kink sector and by an added localized tilted dipole field. This dipole rotates with the planet at a depth of 0.245 R-J below the surface, and its magnitude is set to similar to 1% of Jupiter's dipole moment. The anomaly has a very limited influence on the magnetic field intensity in the equatorial plane between the orbits of Io and Ganymede. However, it is sufficient to bend the field lines near the high-latitude atmosphere and to reproduce the observed satellite ultraviolet footpaths. JUNO's in situ measurements will determine the structure of Jupiter's magnetic field in detail to expand on these results. [less ▲]

Detailed reference viewed: 72 (32 ULg)
Full Text
Peer Reviewed
See detailAuroral evidence of Io's control over the magnetosphere of Jupiter
Bonfond, Bertrand ULg; Grodent, Denis ULg; Gérard, Jean-Claude ULg et al

in Geophysical Research Letters (2012), 39

Contrary to the case of the Earth, the main auroral oval on Jupiter is related to the breakdown of plasma corotation in the middle magnetosphere. Even if the root causes for the main auroral emissions are ... [more ▼]

Contrary to the case of the Earth, the main auroral oval on Jupiter is related to the breakdown of plasma corotation in the middle magnetosphere. Even if the root causes for the main auroral emissions are Io's volcanism and Jupiter's fast rotation, changes in the aurora could be attributed either to these internal factors or to fluctuations of the solar wind. Here we show multiple lines of evidence from the aurora for a major internally-controlled magnetospheric reconfiguration that took place in Spring 2007. Hubble Space Telescope far-UV images show that the main oval continuously expanded over a few months, engulfing the Ganymede footprint on its way. Simultaneously, there was an increased occurrence rate of large equatorward isolated auroral features attributed to injection of depleted flux tubes. Furthermore, the unique disappearance of the Io footprint on 6 June appears to be related to the exceptional equatorward migration of such a feature. The contemporary observation of the spectacular Tvashtar volcanic plume by the New-Horizons probe as well as direct measurement of increased Io plasma torus emissions suggest that these dramatic changes were triggered by Io's volcanic activity. [less ▲]

Detailed reference viewed: 35 (15 ULg)
Peer Reviewed
See detailAuroral excitation and time variations
Gérard, Jean-Claude ULg; Harang, O.

in Annales de Géophysique (1974)

Detailed reference viewed: 6 (5 ULg)
Full Text
Peer Reviewed
See detailThe auroral footprint of Enceladus on Saturn
Pryor, Wayne R; Rymer, Abigail M; Mitchell, Donald G et al

in Nature (2011), 472

Although there are substantial differences between the magnetospheres of Jupiter and Saturn, it has been suggested that cryovolcanic activity at Enceladus could lead to electrodynamic coupling between ... [more ▼]

Although there are substantial differences between the magnetospheres of Jupiter and Saturn, it has been suggested that cryovolcanic activity at Enceladus could lead to electrodynamic coupling between Enceladus and Saturn like that which links Jupiter with Io, Europa and Ganymede. Powerful field-aligned electron beams associated with the Io-Jupiter coupling, for example, create an auroral footprint in Jupiter's ionosphere. Auroral ultraviolet emission associated with Enceladus-Saturn coupling is anticipated to be just a few tenths of a kilorayleigh (ref. 12), about an order of magnitude dimmer than Io's footprint and below the observable threshold, consistent with its non-detection. Here we report the detection of magnetic-field-aligned ion and electron beams (offset several moon radii downstream from Enceladus) with sufficient power to stimulate detectable aurora, and the subsequent discovery of Enceladus-associated aurora in a few per cent of the scans of the moon's footprint. The footprint varies in emission magnitude more than can plausibly be explained by changes in magnetospheric parameters--and as such is probably indicative of variable plume activity. [less ▲]

Detailed reference viewed: 19 (5 ULg)
Full Text
Peer Reviewed
See detailThe auroral footprint of Ganymede
Grodent, Denis ULg; Bonfond, Bertrand ULg; Radioti, Aikaterini ULg et al

in Journal of Geophysical Research. Space Physics (2009), 114(A07212),

The interaction of Ganymede with Jupiter's fast rotating magnetospheric plasma gives rise to a current system producing an auroral footprint in Jupiter's ionosphere, usually referred to as the Ganymede ... [more ▼]

The interaction of Ganymede with Jupiter's fast rotating magnetospheric plasma gives rise to a current system producing an auroral footprint in Jupiter's ionosphere, usually referred to as the Ganymede footprint. Based on an analysis of ultraviolet images obtained with the Hubble Space Telescope we demonstrate that the auroral footprint surface matches a circular region in Ganymede's orbital plane having a diameter of 8 to 20 RG. Temporal analysis of the auroral power of Ganymede's footprint reveals variations of different timescales: 1) a 5 hours timescale associated with the periodic flapping of Jupiter's plasma sheet over Ganymede, 2) a 10 to 40 minutes timescale possibly associated with energetic magnetospheric events, such as plasma injections, and 3) a 100 s timescale corresponding to quasi-periodic fluctuations which might relate to bursty reconnections on Ganymede's magnetopause and/or to the recurrent presence of acceleration structures above Jupiter's atmosphere. These three temporal components produce an auroral power emitted at Ganymede's footprint of the order of ~0.2 GW to ~1.5 GW. [less ▲]

Detailed reference viewed: 81 (50 ULg)
See detailThe auroral footprint signatures of satellites on Jupiter
Gérard; Bonfond, Bertrand ULg; Grodent, Denis ULg

Conference (2007, June 25)

Detailed reference viewed: 4 (0 ULg)
Full Text
See detailAuroral footprints of tail reconnection at Jupiter and Saturn
Radioti, Aikaterini ULg; Grodent, Denis ULg; Gérard, Jean-Claude ULg et al

Conference (2010, May 03)

Tail reconnection at Jupiter’s magnetosphere, has recently been shown to leave its signature in the aurora. The Hubble Space Telescope observed transient polar dawn spots on the Jovian aurora, with a ... [more ▼]

Tail reconnection at Jupiter’s magnetosphere, has recently been shown to leave its signature in the aurora. The Hubble Space Telescope observed transient polar dawn spots on the Jovian aurora, with a characteristic recurrence period of 2-3 days. Because of their periodic occurrence cycle and observed location, it is suggested that the transient auroral features are related to the precipitated, heated plasma during reconnection processes taking place in the Jovian magnetotail. Particularly, it is proposed that the transient auroral spots are triggered by the planetward moving flow bursts released during the process. A comparison of their properties with those of the <br />auroral spots strengthen the conclusion that they are signatures of tail reconnection. <br />Cassini recently revealed magnetotail reconnection events at Saturn similar to those observed at Jupiter. Based on the UVIS dataset we present transient features at Saturn’s polar auroral region, which are possible signatures of tail reconnection. We study their size, power, duration and duty cycle and we suggest possible triggering mechanisms associated with magnetotail dynamics. We compare these auroral emissions with those at Jupiter and we discuss how energy is transferred to the ionosphere during tail reconnection. [less ▲]

Detailed reference viewed: 16 (4 ULg)
Full Text
See detailAuroral footprints; everywhere
Grodent, Denis ULg; Bonfond, Bertrand ULg; Radioti, Aikaterini ULg et al

Conference (2010, May 06)

Jupiter’s moons Io, Europa and Ganymede are continuously interacting with the Jovian magnetic field and with the sheet of plasma flowing near its equatorial plane. The interaction between these moons and ... [more ▼]

Jupiter’s moons Io, Europa and Ganymede are continuously interacting with the Jovian magnetic field and with the sheet of plasma flowing near its equatorial plane. The interaction between these moons and the Jovian magnetosphere causes strong Alfvénic perturbations which propagate along the magnetic field lines. On their way towards Jupiter’s polar regions, these perturbations accelerate charged particles which then interact with Jupiter’s ionosphere where they loose a fraction of their energy in the form of auroral emissions. Each of the three moons leaves an auroral footprint around the poles of Jupiter which departs from the bulk of the auroral emission. Their location is mainly controlled by the topology of the field lines and thus analysis of the auroral footprints provides information on the magnetic field itself. In that regard, the satellites auroral footpaths were used to highlight the presence of a strong magnetic anomaly in the northern hemisphere of Jupiter. Detailed inspection of the footprints’ brightness and morphology as a function of time reveals fundamental information on the interaction mechanisms near the moons, on the particles acceleration mechanisms as well as on the Jovian ionosphere. For example, it was suggested that the Io footprint actually consists of several spots resulting from successive steps in the perturbation propagation process. Another example is the finding of three different timescales in the variations of Ganymede’s footprint; each of them is pointing to a different part of the electromagnetic interaction between the moon’s mini-magnetosphere and the Jovian plasma. Several recent images of Saturn’s auroral regions obtained with Cassini/UVIS at high latitude show an obvious auroral spot at the predicted location of Enceladus’ footprint. This major finding demonstrates that the electromagnetic interaction between a moon and its parent planet is not unique to Jupiter but appears to be a common feature in planetary systems. [less ▲]

Detailed reference viewed: 33 (0 ULg)
Peer Reviewed
See detailThe auroral ionosphere - Comparison of a time-dependent model with composition measurements
Gérard, Jean-Claude ULg; Rusch, D. W.

in Journal of Geophysical Research (1979), 84

A time-dependent model of the auroral ionosphere including the odd nitrogen species, NO, N(D-2), and N(S-4), is used for comparison with data from a coordinated rocket-satellite measurement of an auroral ... [more ▼]

A time-dependent model of the auroral ionosphere including the odd nitrogen species, NO, N(D-2), and N(S-4), is used for comparison with data from a coordinated rocket-satellite measurement of an auroral event. The chemical scheme and the adopted rate coefficients have been shown to be compatible with daytime mid-latitude ionospheric chemistry. The electron flux and neutral atmospheric parameters measured on the satellite are used to compute the appropriate ionization and dissociation rates. The calculated NO(plus), O2(plus), O(plus), Ne, and NO densities agree well with the rocket measurements. The calculated N2(plus) densities are larger than the measured densities by a factor of 3 at most altitudes. The calculations show that the nitric oxide content of the aurora (about 1.2 times 10 to the 9th NO molecules/cu cm at 105 km) is below the saturation value. [less ▲]

Detailed reference viewed: 10 (0 ULg)