Browsing
     by title


0-9 A B C D E F G H I J K L M N O P Q R S T U V W X Y Z

or enter first few letters:   
OK
Full Text
See detailNanocarriers tailored for the delivery of proteinaceous drugs
Grandfils, Christian ULg

Conference (2013, April 09)

Detailed reference viewed: 22 (1 ULg)
Full Text
Peer Reviewed
See detailNanocoatings of inorganic surfaces by molecular biomimetic
Vreuls, Christelle ULg; Genin, Alexis ULg; Zocchi, Germaine ULg et al

Poster (2010, March 22)

Detailed reference viewed: 57 (20 ULg)
Full Text
Peer Reviewed
See detailNanocoatings of inorganic surfaces by molecular biomimetic
Vreuls, Christelle ULg; Genin, Alexis ULg; Zocchi, Germaine ULg et al

Poster (2010, June 30)

Detailed reference viewed: 35 (7 ULg)
Full Text
See detailNanocoatings of inorganic surfaces by the layer by layer (LbL) technology
Faure, Emilie ULg; Zocchi, Germaine ULg; Lenoir, Sandrine et al

Poster (2009, April 02)

Detailed reference viewed: 55 (19 ULg)
Full Text
See detailNanocoatings of steel surfaces by molecular biomimetic
Vreuls, Christelle ULg; Charlot, Aurelia; Farina, Fabrice ULg et al

Scientific conference (2007, June 01)

Detailed reference viewed: 24 (6 ULg)
Full Text
Peer Reviewed
See detailNanocomposite fiber reinforced mortars
Coppola, Bartolomeo; Di Maio, Luciano; Courard, Luc ULg et al

in Proceedings of the International Conference on Composites/Nano Engineering (2014)

The use of fibers to reinforce a brittle material is an extensively studied application. In the field of cementitious materials a wide range of fibers have been investigated, from natural to synthetic ... [more ▼]

The use of fibers to reinforce a brittle material is an extensively studied application. In the field of cementitious materials a wide range of fibers have been investigated, from natural to synthetic fiber (wood, cellulose, carbon, glass, polypropylene) in order to achieve several purposes. Nowadays there is a continuing effort to take advantage of recent advances in nanotechnology, in the polymer and fiber industry. Nanoclays are some of the most affordable materials that have shown promising results in nanocomposite polymers. They are characterized by a “platelet” structure with average dimension of 1 nm thick and 70 to 150 nm wide. This work is aimed at studying the different behavior of fiber reinforced mortars, containing nanocomposite polymeric fibers. [less ▲]

Detailed reference viewed: 113 (4 ULg)
Full Text
Peer Reviewed
See detailNanocomposite foams of polypropylene and carbon nanotubes: preparation, characterization, and evaluation of their performance as EMI absorbers
Tran, Minh-Phuong; Thomassin, Jean-Michel ULg; Alexandre, Michaël et al

in Macromolecular Chemistry and Physics (2015), 216(12), 1302-1312

Highly expanded nanocomposite foams of polypropylene and carbon nanotubes (PP/CNT) are formed using supercritical carbon dioxide (scCO 2 ) technology. The foaming parameters (temperature, pressure) are ... [more ▼]

Highly expanded nanocomposite foams of polypropylene and carbon nanotubes (PP/CNT) are formed using supercritical carbon dioxide (scCO 2 ) technology. The foaming parameters (temperature, pressure) are investigated to establish their infl uence on the morphology of the resulting foams and their impact on the electrical con- ductivity. As promising electromagnetic-interference (EMI) absorbers, the EMI shielding performance of the foams is determined, and a preliminary relationship is established between foam morphology and the EMI shielding perfor- mance. The best candidates are highly expanded foams with a volume expansion of >25, containing 0.1 vol% CNTs; they are able to absorb more than 90% of the incident radiation between 25 and 40 GHz. [less ▲]

Detailed reference viewed: 62 (11 ULg)
Full Text
Peer Reviewed
See detailNanocomposites based on MWCNT and polystyrene, styrene-acrylonitrile copolymer, or polymethylmethacrylate, obtained by miniemulsion polymerization
Donescu, Dan; Corobea, Mihai Cosmin; Petcu, Cristian et al

in Journal of Applied Polymer Science (2014), 131(23), 411481-10

Free radical miniemulsion polymerization of styrene (St), St/acrylonitrile 3 : 1 mixture or methylmethacrylate in the presence of multiwalled carbon nanotubes (MWCNT) was proven as a convenient way to ... [more ▼]

Free radical miniemulsion polymerization of styrene (St), St/acrylonitrile 3 : 1 mixture or methylmethacrylate in the presence of multiwalled carbon nanotubes (MWCNT) was proven as a convenient way to obtain homogenous hybrids with perspectives in associated applications like foams specialties materials. Miniemulsion polymerization was viable up to 2% wt. MWCNT to monomer, without agglomerations. The grafting on MWCNT during the polymerization occurs without the need for supplementary functionalization and the polymer grafted nanotubes showed stable dispersions in the polymer solvent. Monomer polarity affected the grafting ability during the polymerization process. The nanocomposites obtained after purification and drying were used in foaming process. MWCNT presence in the related nanocomposites decreased the pore sizes in foam-like materials (for all three different matrices). At 1 wt % MWCNT content, low density (< 0.3 g/cm3), low pore size (< 10 μm) and high cell density (>109 cell/cm3) were achieved. [less ▲]

Detailed reference viewed: 72 (4 ULg)
Full Text
Peer Reviewed
See detailNanocrystalline silicon: Lattice dynamics and enhanced thermoelectric properties
Claudio, T.; Stein, N.; Stroppa, D. G. et al

in Physical Chemistry Chemical Physics (2014), 16(47), 25701-25709

Silicon has several advantages when compared to other thermoelectric materials, but until recently it was not used for thermoelectric applications due to its high thermal conductivity, 156 W K-1 m-1 at ... [more ▼]

Silicon has several advantages when compared to other thermoelectric materials, but until recently it was not used for thermoelectric applications due to its high thermal conductivity, 156 W K-1 m-1 at room temperature. Nanostructuration as means to decrease thermal transport through enhanced phonon scattering has been a subject of many studies. In this work we have evaluated the effects of nanostructuration on the lattice dynamics of bulk nanocrystalline doped silicon. The samples were prepared by gas phase synthesis, followed by current and pressure assisted sintering. The heat capacity, density of phonons states, and elastic constants were measured, which all reveal a significant, ≈25%, reduction in the speed of sound. The samples present a significantly decreased lattice thermal conductivity, ≈25 W K-1 m-1, which, combined with a very high carrier mobility, results in a dimensionless figure of merit with a competitive value that peaks at ZT ≈ 0.57 at 973°C. Due to its easily scalable and extremely low-cost production process, nanocrystalline Si prepared by gas phase synthesis followed by sintering could become the material of choice for high temperature thermoelectric generators. © the Owner Societies 2014. [less ▲]

Detailed reference viewed: 37 (1 ULg)
Full Text
Peer Reviewed
See detailNanoindentation and scanning force microscopy as a novel method for the characterization of tribological transfer films
Randall, N. X.; Bozet, Jean-Luc ULg

in Wear (1997), 212(1), 18-24

In conventional pin-on-disk testing of the tribological characteristics of two different materials in sliding contact, the main parameters of interest are notably the friction and wear properties of the ... [more ▼]

In conventional pin-on-disk testing of the tribological characteristics of two different materials in sliding contact, the main parameters of interest are notably the friction and wear properties of the material pair. However, when two bodies consisting of hard and soft materials respectively are subjected to such testing, the appearance of a transfer film, or third body, which can be a composite mixture of the two, is often observed. Until now the characterization of transfer films in terms of their mechanical properties has been hampered by their nonhomogeneous distribution across a tested surface, their small size, low thickness and the difficulty in accurately positioning a test probe such that the film properties can be measured independently from those of the substrate. In this paper a new method is introduced, consisting of nanoindentation and scanning force microscopy (SFM), which is capable of highly localized indentation testing of a specified sample site with high resolution imaging of the area prior to and after indentation. In this way the hardness and modulus of a transfer film can be obtained, as well as valuable surface topographical information concerning the material response to the indentation. Measurements are presented for the material pair A286/polyimide after testing on a pin-on-disk tribometer in ambient air and liquid nitrogen. Distinct variations in hardness between the transfer films and their contacting bodies have een observed and correlated to the wear behaviour and testing environment. (C) 1997 Elsevier Science S.A. [less ▲]

Detailed reference viewed: 56 (1 ULg)
Peer Reviewed
See detailNanoindentation investigation of Ti/TiN multilayers films
Ben Daia, M.; Aubert, P.; Labdi, S. et al

in Journal of Applied Physics (2000), 87(11), 7753-7757

The hardness of Ti/TiN nanolaminated films is investigated in this study. Monolithic Ti and TiN films and Ti/TiN multilayers were deposited on silicon substrates by radio-frequency sputtering. The period ... [more ▼]

The hardness of Ti/TiN nanolaminated films is investigated in this study. Monolithic Ti and TiN films and Ti/TiN multilayers were deposited on silicon substrates by radio-frequency sputtering. The period thickness of multilayers was decreased from 20 to 2.5 nm. Grazing x-ray reflectometry showed that the modulation of composition of Ti/TiN multilayers exists for all the period thickness considered. From nanoindentation measurements, we determined the hardness and Young's modulus of multilayers. Hardness increased with decreasing period thickness to go beyond the rule-of-mixture value for samples with period thickness of Lambda less than or equal to 5 nm. The maximum hardness, 1.6 times higher than the value obtained by the rule of mixture, is obtained for Lambda=2.5 nm. Our results are compared to a dislocation-based model previously introduced by Lehoczky. (C) 2000 American Institute of Physics. [S0021-8979(00)09411-1]. [less ▲]

Detailed reference viewed: 87 (0 ULg)
Full Text
Peer Reviewed
See detailNANOMATERIAL BEHAVIOUR OF A GOLD MICROCANTILEVER SUBJECTED TO PLASTIC DEFORMATIONS
Pustan, Marius ULg

in Digest Journal of Nanomaterials & Biostructures [=DJNB] (2011), 6(1), 285-290

The nanomechanical material behaviour of a gold microcantilever subjected to plastic deformations is presented in this paper. Using an atomic force microscope, experimental investigations are performed in ... [more ▼]

The nanomechanical material behaviour of a gold microcantilever subjected to plastic deformations is presented in this paper. Using an atomic force microscope, experimental investigations are performed in order to determine the dependence between bending deflections of sample versus applied forces and to estimate the maximum stress in the beam structure. During testing, the force has successive positions on microcantilever, starting from the beam free-end and moving toward to the anchor. The plastic deformation of microcantilever occurs when the force is applied close to the beam anchor and performed large deflections. Finite element analysis is used to visualize the deflection of microcantilever and to estimate the maximum stress. [less ▲]

Detailed reference viewed: 41 (3 ULg)
Full Text
Peer Reviewed
See detailNanomechanical and nanotribological characterization of microelectromechanical system
Pustan, Marius; Muller, Raluca; Golinval, Jean-Claude ULg

in Journal of Optoelectronics and Advanced Materials [= JOAM] (2012), 14(3-4), 401-412

Investigations of the mechanical and tribological properties of microelectromechanical system (MEMS) components on nanoscale can provide insights into failure mechanism of material. The main goal of this ... [more ▼]

Investigations of the mechanical and tribological properties of microelectromechanical system (MEMS) components on nanoscale can provide insights into failure mechanism of material. The main goal of this paper is focused on the mechanical and tribological characterizations of MEMS mechanical components in order to improve their reliability design. The mechanical properties of interests are stiffness, modulus of elasticity, stress, strain. Dynamical investigations are performed to analyze the resonant frequency response, velocity and amplitude of oscillations of electrostatically actuated microcomponents and to estimate the quality factor. Finite element analysis is used to validate the experimental results of mechanical properties and to simulate the dynamical behaviour of investigated microcomponents. Tribological investigations are developed to estimate the stiction and friction. Testing and the individual characterization of MEMS materials and structures, performed using advanced equipments such as atomic force microscope and optical vibrometer analyzer are presented. [less ▲]

Detailed reference viewed: 177 (1 ULg)
Full Text
See detailNanomechanical properties of sensing microcomponents
Pustan, Marius ULg; Golinval, Jean-Claude ULg; Rochus, Véronique ULg

Scientific conference (2009)

Detailed reference viewed: 44 (16 ULg)
See detailNanomedicine for the treatment of brain diseases
Palazzo, Claudio ULg

Scientific conference (2014, October 20)

Detailed reference viewed: 34 (5 ULg)
Full Text
Peer Reviewed
See detailNanometer scale organization of mixed surfactin/phosphatidylcholine monolayers
Deleu, Magali ULg; Paquot, Michel ULg; Jacques, Philippe ULg et al

in Biophysical Journal (1999), 77(4), 2304-2310

Mixed monolayers of the surface-active lipopeptide surfactin-C-15 and of dipalmitoyl phosphatidylcholine (DPPC) were deposited on mica and their nanometer scale organization was investigated using atomic ... [more ▼]

Mixed monolayers of the surface-active lipopeptide surfactin-C-15 and of dipalmitoyl phosphatidylcholine (DPPC) were deposited on mica and their nanometer scale organization was investigated using atomic force microscopy (AFM) and x-ray photoelectron spectroscopy (XPS). AFM topographic images revealed phase separation for mixed monolayers prepared at 0.1, 0.25, and 0.5 surfactin molar ratios. This was in agreement with the monolayer properties at the air-water interface indicating a tendency of the two compounds to form bidimensional domains in the mixed systems. The step height measured between the surfactin and the DPPC domains was 1.2 +/- 0.1 nm, pointing to a difference in molecular orientation: while DPPC had a vertical orientation, the large peptide ring of surfactin was lying on the mica surface. The N/C atom concentration ratios obtained by XPS for pure monolayers were compatible with two distinct geometric models: a random layer for surfactin and for DPPC, a layer of vertically-oriented molecules in which the polar headgroups are in contact with mica. XPS data for mixed systems were accounted for by a combination of the two pure monolayers, considering respective surface coverages that were in excellent agreement with those measured by AFM. These results illustrate the complementarity of AFM and XPS to directly probe the molecular organization of multicomponent monolayers. [less ▲]

Detailed reference viewed: 13 (0 ULg)
See detailNanometer-scale wetting transitions in mesopores: a SAXS analysis
Gommes, Cédric ULg

Conference (2015, May)

The equilibrium and metastable configurations of confined binary liquids has been a topic of research since the early work of Liu et al. in the nineties [1]. In particular, it has been proposed ... [more ▼]

The equilibrium and metastable configurations of confined binary liquids has been a topic of research since the early work of Liu et al. in the nineties [1]. In particular, it has been proposed theoretically that liquids may coexist inside nanopores in the form of layers covering uniformly the solid surface, of plugs filling locally the pore space, or of capsules floating in the middle of the pores. In the present contribution, we report in situ synchrotron small-angle scattering (SAXS) experiments on hexane/nitrobenzene solutions confined in mesoporous carbon xerogels [2]. The SAXS shows that these systems exhibit reversible temperature-induced transitions between the layer and the plug configurations. The scattering data is analyzed using a so-called plurigaussian model, which enables us to reconstruct the configurations of the confined liquids, and quantitatively analyze the wetting transitions at the nanometer-scale in terms of changing interface areas, contact angles, and triple-line lengths. [less ▲]

Detailed reference viewed: 60 (2 ULg)
Full Text
See detailNanonu, maar hoe?
Van Oudheusden, Michiel ULg

Article for general public (2007)

Detailed reference viewed: 24 (0 ULg)