Browsing
     by title


0-9 A B C D E F G H I J K L M N O P Q R S T U V W X Y Z

or enter first few letters:   
OK
Full Text
Peer Reviewed
See detailThe neural substrate of orientation working memory
Cornette, Luc; Dupont, Patrick; Salmon, Eric ULg et al

in Journal of Cognitive Neuroscience (2001), 13(6), 813-828

We have used positron emission tomography (PET) to identify the neural substrate of two major cognitive components of working memory (WM), maintenance and manipulation of a single elementary visual ... [more ▼]

We have used positron emission tomography (PET) to identify the neural substrate of two major cognitive components of working memory (WM), maintenance and manipulation of a single elementary visual attribute, i.e., the orientation of a grating presented in central vision. This approach allowed us to equate difficulty across tasks and prevented subjects from using verbal strategies or vestibular cues. Maintenance of orientations involved a distributed fronto-parietal network, that is, left and right lateral superior frontal sulcus (SFSl), bilateral ventrolateral prefrontal cortex (VLPFC), bilateral precuneus, and right superior parietal lobe (SPL). A more medial superior frontal sulcus region (SFSm) was identified as being instrumental in the manipulative operation of updating orientations retained in the WM. Functional connectivity analysis revealed that orientation WM relies on a coordinated interaction between frontal and parietal regions. In general, the current findings confirm the distinction between maintenance and manipulative processes, highlight the functional heterogeneity in the prefrontal cortex (PFC), and suggest a more dynamic view of WM as a process requiring the coordinated interaction of anatomically distinct brain areas. [less ▲]

Detailed reference viewed: 17 (0 ULg)
Full Text
Peer Reviewed
See detailThe Neural Substrates of Memory Suppression: A fMRI Exploration of Directed Forgetting
Bastin, Christine ULg; Feyers, Dorothée ULg; Majerus, Steve ULg et al

in PLoS ONE (2012), 7(1), 29905

The directed forgetting paradigm is frequently used to determine the ability to voluntarily suppress information. However, little is known about brain areas associated with information to forget. The ... [more ▼]

The directed forgetting paradigm is frequently used to determine the ability to voluntarily suppress information. However, little is known about brain areas associated with information to forget. The present study used functional magnetic resonance imaging to determine brain activity during the encoding and retrieval phases of an item-method directed forgetting recognition task with neutral verbal material in order to apprehend all processing stages that information to forget and to remember undergoes. We hypothesized that regions supporting few selective processes, namely recollection and familiarity memory processes, working memory, inhibitory and selection processes should be differentially activated during the processing of to-be-remembered and to-be-forgotten items. Successful encoding and retrieval of items to remember engaged the entorhinal cortex, the hippocampus, the anterior medial prefrontal cortex, the left inferior parietal cortex, the posterior cingulate cortex and the precuneus; this set of regions is well known to support deep and associative encoding and retrieval processes in episodic memory. For items to forget, encoding was associated with higher activation in the right middle frontal and posterior parietal cortex, regions known to intervene in attentional control. Items to forget but nevertheless correctly recognized at retrieval yielded activation in the dorsomedial thalamus, associated with familiarity-based memory processes and in the posterior intraparietal sulcus and the anterior cingulate cortex, involved in attentional processes. [less ▲]

Detailed reference viewed: 172 (14 ULg)
Full Text
Peer Reviewed
See detailNeural substrates of phonological and lexicosemantic representations in Alzheimer's disease.
Peters, Frederic; Majerus, Steve ULg; Collette, Fabienne ULg et al

in Human Brain Mapping (2009), 30(1), 185-99

The language profile of patients suffering from Alzheimer's disease (AD) is characterized not only by lexicosemantic impairments but also by phonological deficits, as shown by an increasing number of ... [more ▼]

The language profile of patients suffering from Alzheimer's disease (AD) is characterized not only by lexicosemantic impairments but also by phonological deficits, as shown by an increasing number of neuropsychological studies. This study explored the functional neural correlates underlying phonological and lexicosemantic processing in AD. Using H(215)O PET functional brain imaging, a group of mild to moderate AD patients and a group of age-matched controls were asked to repeat four types of verbal stimuli: words, wordlike nonwords (WL+), non-wordlike nonwords (WL-) and simple vowels. The comparison between the different conditions allowed us to determine brain activation preferentially associated with lexicosemantic or phonological levels of language representations. When repeating words, AD patients showed decreased activity in the left temporo-parietal and inferior frontal regions relative to controls, consistent with distorted lexicosemantic representations. Brain activity was abnormally increased in the right superior temporal area during word repetition, a region more commonly associated with perceptual-phonological processing. During repetition of WL+ and WL- nonwords, AD patients showed decreased activity in the middle part of the superior temporal gyrus, presumably associated with sublexical phonological information; at the same time, AD patients showed larger activation than controls in the inferior temporal gyrus, typically associated with lexicosemantic levels of representation. Overall, the results suggest that AD patients use altered pathways to process phonological and lexicosemantic information, possibly related to a progressive loss of specialization of phonological and lexicosemantic neural networks. [less ▲]

Detailed reference viewed: 112 (19 ULg)
Full Text
Peer Reviewed
See detailNeural substrates of recollection and familiarity in Alzheimer’s disease
Genon, Sarah ULg; Salmon, Eric ULg; Collette, Fabienne ULg et al

in Proceedings of the 16th annual meeting of the Organization for Human Brain Mapping (2010)

Detailed reference viewed: 24 (4 ULg)
Peer Reviewed
See detailThe neural substrates of the central executive: Exploration of the updating and shifting processes
Collette, Fabienne ULg; Van der Linden, Martial ULg; Delchambre, Marie et al

Conference (2002, September)

Detailed reference viewed: 25 (1 ULg)
See detailThe neural substrates of the central executive: Exploration of the updating and shifting processes
Collette, Fabienne ULg; Van der Linden, Martial ULg; Delchambre, Marie et al

Conference (2002, December)

Detailed reference viewed: 19 (2 ULg)
Full Text
Peer Reviewed
See detailNeurally adjusted ventilatory assist (NAVA) improves patient-ventilator interaction during non-invasive ventilation delivered by face mask
Piquilloud, L; Tassaux, D; Bialais, E et al

in Intensive Care Medicine (2012)

PURPOSE: To determine if, compared to pressure support (PS), neurally adjusted ventilatory assist (NAVA) reduces patient-ventilator asynchrony in intensive care patients undergoing noninvasive ventilation ... [more ▼]

PURPOSE: To determine if, compared to pressure support (PS), neurally adjusted ventilatory assist (NAVA) reduces patient-ventilator asynchrony in intensive care patients undergoing noninvasive ventilation with an oronasal face mask. METHODS: In this prospective interventional study we compared patient-ventilator synchrony between PS (with ventilator settings determined by the clinician) and NAVA (with the level set so as to obtain the same maximal airway pressure as in PS). Two 20-min recordings of airway pressure, flow and electrical activity of the diaphragm during PS and NAVA were acquired in a randomized order. Trigger delay (T(d)), the patient's neural inspiratory time (T(in)), ventilator pressurization duration (T(iv)), inspiratory time in excess (T(iex)), number of asynchrony events per minute and asynchrony index (AI) were determined. RESULTS: The study included 13 patients, six with COPD, and two with mixed pulmonary disease. T(d) was reduced with NAVA: median 35 ms (IQR 31-53 ms) versus 181 ms (122-208 ms); p = 0.0002. NAVA reduced both premature and delayed cyclings in the majority of patients, but not the median T(iex) value. The total number of asynchrony events tended to be reduced with NAVA: 1.0 events/min (0.5-3.1 events/min) versus 4.4 events/min (0.9-12.1 events/min); p = 0.08. AI was lower with NAVA: 4.9 % (2.5-10.5 %) versus 15.8 % (5.5-49.6 %); p = 0.03. During NAVA, there were no ineffective efforts, or late or premature cyclings. PaO(2) and PaCO(2) were not different between ventilatory modes. CONCLUSION: Compared to PS, NAVA improved patient ventilator synchrony during noninvasive ventilation by reducing T(d) and AI. Moreover, with NAVA, ineffective efforts, and late and premature cyclings were absent. [less ▲]

Detailed reference viewed: 11 (2 ULg)
Full Text
Peer Reviewed
See detailNeurally Adjusted Ventilatory Assist (NAVA) improves the matching of diaphragmatic electrical activity and tidal volume in comparison to pressure support (PS)
Piquilloud, L; Chiew, YS; Bialais, E et al

in Intensive Care Medicine (2011), 37 (Suppl 1)

Detailed reference viewed: 18 (1 ULg)
Full Text
Peer Reviewed
See detailNeuregulin signaling regulates neural precursor growth and the generation of oligodendrocytes in vitro
Calaora, Viviane; Rogister, Bernard ULg; Bismuth, Karen et al

in Journal of Neuroscience (2001), 21

Detailed reference viewed: 6 (1 ULg)
Full Text
Peer Reviewed
See detailNeuregulin-1 modulates the differentiation of neural stem cells in vitro trough an interaction with the Swi/Snf complex.
Pirotte, Dorothée ULg; Wislet, Sabine ULg; cloes, J. M. et al

in Molecular & Cellular Neuroscience [=MCN] (2010)

The neuregulin-1 (Nrg-1) gene is translated into several protein isoforms, which are either secreted or membrane-anchored. In vitro, neural stem cells (NSC) express mainly the cystein-rich-domain NRG (CRD ... [more ▼]

The neuregulin-1 (Nrg-1) gene is translated into several protein isoforms, which are either secreted or membrane-anchored. In vitro, neural stem cells (NSC) express mainly the cystein-rich-domain NRG (CRD-NRG) isoform, a membrane-anchored type III form. This isoform exhibits a cystein-rich-domain, which constitutes a second transmembrane domain and can be cleaved to release both a signaling EGF-containing domain (ECD) at the cell surface and an intracellular domain (ICD). The main goal of this paper was to determine the exact role of ECD and ICD in NSC survival and differentiation. Using an siRNA approach, we demonstrated that CRD-NRG inhibition was followed by a decrease in NSC proliferation and of neuronal or oligodendroglial differentiation. Overexpression of ICD but not ECD was followed by a decrease in NSC proliferation and an increase in neuronal and oligodendroglial differentiation. Moreover, we showed that ICD physically interacted in cultured NSC with BRM and BAF57, two members of the Swi/Snf remodeling complex, and that ICD stimulation of neuronal cell differentiation is dependent on the presence of BAF57. [less ▲]

Detailed reference viewed: 61 (10 ULg)
Peer Reviewed
See detailNeuro-imagerie fonctionnelle métabolique par émission de positons chez l'homme
Salmon, Eric ULg; Frackowiak, R. S.

in Revue Neurologique (1990), 146(8-9), 459-77

Positron emission tomography allows an in vivo assessment of various physiological and biochemical processes, for example cerebral blood flow, metabolism, or interactions between ligands and receptors ... [more ▼]

Positron emission tomography allows an in vivo assessment of various physiological and biochemical processes, for example cerebral blood flow, metabolism, or interactions between ligands and receptors. Data quantification and interpretation rest on models describing in a simple way the behavior of the labelled molecules. The general principles are common, but each model has limitations. The different methods are first validated in and applied to normal populations under resting conditions. New techniques for rapid assessments of blood flow and metabolism make it possible to measure cerebral activation after sensori-motor, mental or pharmacological stimulation. This should allow the study of recovery or plasticity of the lesioned brain, after a stroke for example. PET measurements of cerebral blood flow, oxygen consumption and extraction, and cerebral blood volume are particularly well suited to investigate the physiopathology of cerebrovascular diseases. Remote metabolic disturbances give information on interregional cerebral connections, and on clinico-metabolic correlations. In epilepsy, PET is useful in localizing the epileptogenic focus in partial epilepsy: it is hypometabolic interictally. The meaning of the hypometabolism has still to be established. New information about the neurochemistry of the epileptogenic focus should become available from studies of benzodiazepine, excitatory amino acid or opiate systems, for example. PET has already enabled pathophysiological hypotheses to be tested in status epilepticus. Disturbances of metabolism and neurotransmission systems have been observed at various stages and in various types of neurodegenerative diseases. The modifications are not only an early reflection of anatomopathological lesions, but could give more direct information on the pathogenesis or symptomatology of these diseases and hence lead to new therapeutic endeavours, such as appropriate replacement therapy analogous by to dopatherapy in Parkinson's disease. [less ▲]

Detailed reference viewed: 17 (1 ULg)
Full Text
Peer Reviewed
See detailLa neuro-imagerie: au-delà des images, une modélisation du fonctionnement cérébral humain
Maquet, Pierre ULg

in Medecine sciences : M/S (2011), 27(1), 5-6

Detailed reference viewed: 42 (4 ULg)
Full Text
Peer Reviewed
See detailLa neuro-imagerie: un outil diagnostique des etats de conscience alteree.
Thonnard, Marie ULg; Boly, Mélanie ULg; Bruno, Marie-Aurelie et al

in Medecine Sciences : M/S (2011), 27(1), 77-81

Vegetative and minimally conscious states diagnosis remained a major clinical challenge. New paradigms such as measurement of the global cerebral metabolism, the structural and functional integrity of ... [more ▼]

Vegetative and minimally conscious states diagnosis remained a major clinical challenge. New paradigms such as measurement of the global cerebral metabolism, the structural and functional integrity of fronto-parietal network, or the spontaneous activity in resting state have been shown to be helpful to disentangle vegetative from minimally conscious patients. Active neuroimagery paradigms also allow detecting voluntary and conscious activity in non-communicative patients. The implementation of these methods in clinical routine could permit to reduce the current high rate of misdiagnosis (40%). [less ▲]

Detailed reference viewed: 20 (5 ULg)
See detailLa neuro-urologie
Martin, Didier ULg

Scientific conference (2011, January 12)

Detailed reference viewed: 15 (0 ULg)
Full Text
Peer Reviewed
See detailNeuroanatomical Distribution and Variations across the Reproductive Cycle of Aromatase Activity and Aromatase-Immunoreactive Cells in the Pied Flycatcher (Ficedula Hypoleuca)
Foidart, Agnès ULg; Silverin, B.; Baillien, M. et al

in Hormones & Behavior (1998), 33(3), 180-96

The anatomical distribution and seasonal variations in aromatase activity and in the number of aromatase-immunoreactive cells were studied in the brain of free-living male pied flycatchers (Ficedula ... [more ▼]

The anatomical distribution and seasonal variations in aromatase activity and in the number of aromatase-immunoreactive cells were studied in the brain of free-living male pied flycatchers (Ficedula hypoleuca). A high aromatase activity was detected in the telencephalon and diencephalon but low to negligible levels were present in the optic lobes, cerebellum, and brain stem. In the diencephalon, most aromatase-immunoreactive cells were confined to three nuclei implicated in the control of reproductive behaviors: the medial preoptic nucleus, the nucleus of the stria terminalis, and the ventromedial nucleus of the hypothalamus. In the telencephalon, the immunopositive cells were clustered in the medial part of the neostriatum and in the hippocampus as previously described in another songbird species, the zebra finch. No immunoreactive cells could be observed in the song control nuclei. A marked drop in aromatase activity was detected in the anterior and posterior diencephalon in the early summer when the behavior of the birds had switched from defending a territory to helping the female in feeding the nestlings. This enzymatic change is presumably controlled by the drop in plasma testosterone levels observed at that stage of the reproductive cycle. No change in enzyme activity, however, was seen at that time in other brain areas. The number of aromatase-immunoreactive cells also decreased at that time in the caudal part of the medial preoptic nucleus but not in the ventromedial nucleus of the hypothalamus (an increase was even observed), suggesting that differential mechanisms control the enzyme concentration and enzyme activity in the hypothalamus. Taken together, these data suggest that changes in diencephalic aromatase activity contribute to the control of seasonal variations in reproductive behavior of male pied flycatchers but the role of the telencephalic aromatase in the control of behavior remains unclear at present. [less ▲]

Detailed reference viewed: 7 (0 ULg)
Full Text
Peer Reviewed
See detailNeuroanatomical Distribution of Testosterone-Metabolizing Enzymes in the Japanese Quail
Schumacher, M.; Balthazart, Jacques ULg

in Brain Research (1987), 422(1), 137-48

We describe a very sensitive and precise assay which allows one to study the metabolism of testosterone (T) in small brain nuclei dissected out according to the method of Palkovits and Brownstein. With ... [more ▼]

We describe a very sensitive and precise assay which allows one to study the metabolism of testosterone (T) in small brain nuclei dissected out according to the method of Palkovits and Brownstein. With this method, the neuroanatomical distributions of aromatase, and 5 alpha- and 5 beta-reductase activities were studied in adult male quail (Coturnix coturnix japonica). The different enzymes show different neuroanatomical distributions. Production of estradiol-17 beta (E2) was highest in the sexually dimorphic nucleus preopticus medialis (POM). We showed previously that the preoptic aromatase activity is higher in male than in female quail. As the POM is a central and very large structure within the preoptic area, the present results suggest a relationship between the neuroanatomical and the biochemical sex differences. By contrast, the production of 5 alpha-DHT was highest in the lateral hypothalamic area (LHY), the bed nucleus of the pallial commissure (BPC) and the lateral septum (SL). The 5 beta-reductase activity was highest in the lateral septum and in the ventral part of the archistriatum (AV). Moreover, there was a rostral to caudal decrease in 5 beta-reductase activity in the hypothalamus. [less ▲]

Detailed reference viewed: 9 (1 ULg)
Full Text
Peer Reviewed
See detailNeuroanatomical Specificity in the Autoregulation of Aromatase-Immunoreactive Neurons by Androgens and Estrogens: An Immunocytochemical Study
Balthazart, Jacques ULg; Foidart, Agnès ULg; Surlemont, C. et al

in Brain Research (1992), 574(1-2), 280-90

Testosterone (T) increases brain aromatase activity (AA) in quail and other avian and mammalian species. It was shown both in quail and in rat that this enzymatic induction results from a synergistic ... [more ▼]

Testosterone (T) increases brain aromatase activity (AA) in quail and other avian and mammalian species. It was shown both in quail and in rat that this enzymatic induction results from a synergistic action of androgens and estrogens. These studies provide little information on possible anatomical or cellular specificity of the effect. Using a polyclonal antiserum against human placental aromatase, we have previously identified aromatase-immunoreactive (ARO-ir) neurons in the quail brain and demonstrated that T increases the number of ARO-ir cells in the quail preoptic area (POA) supporting previous evidence that T increases AA in the brain. However, which T metabolites are involved, the actual mechanism of regulation and the possibility of anatomical specificity for these effects are not yet clear. In the present study, we disassociated the effects of androgens and estrogens in aromatase induction by comparing ARO-ir neurons of quail treated with T alone or T in the presence of a potent aromatase inhibitor (R76713), which has been shown to depress AA levels and to suppress T-activated copulatory behavior. T increased the number of ARO-ir cells in POA, bed nucleus striae terminalis (BNST) and tuberal hypothalamus (Tu). The T effect was inhibited by concurrent treatment with aromatase inhibitor in Tu, but not in POA and BNST. This differential effect of the aromatase inhibitor fits in very well with our previous studies of the co-localization of aromatase and estrogen receptors. The T effect was blocked by R76713 in areas where ARO-ir and estrogen receptor-ir are generally co-localized (Tu) and was not affected in areas with mainly ARO-ir positive, estrogen receptor-ir negative cells (POA, BNST). This suggests anatomical differences in the expression or clearance of aromatase which may be differentially sensitive to androgens and estrogens and dependent upon the presence of sex steroid receptors. [less ▲]

Detailed reference viewed: 5 (0 ULg)
Peer Reviewed
See detailNeuroanatomical Specificity in the Co-Localization of Aromatase and Estrogen Receptors
Balthazart, Jacques ULg; Foidart, Agnès ULg; Surlemont, C. et al

in Journal of Neurobiology (1991), 22(2), 143-57

The relative distributions of aromatase and of estrogen receptors were studied in the brain of the Japanese quail by a double-label immunocytochemical technique. Aromatase immunoreactive cells (ARO-ir ... [more ▼]

The relative distributions of aromatase and of estrogen receptors were studied in the brain of the Japanese quail by a double-label immunocytochemical technique. Aromatase immunoreactive cells (ARO-ir) were found in the medial preoptic nucleus, in the septal region, and in a large cell cluster extending from the dorso-lateral aspect of the ventromedial nucleus of the hypothalamus to the tuber at the level of the nucleus inferioris hypothalami. Immunoreactive estrogen receptors (ER) were also found in each of these brain areas but their distribution was much broader and included larger parts of the preoptic, septal, and tuberal regions. In the ventromedial and tuberal hypothalamus, the majority of the ARO-ir cells (over 75%) also contained immunoreactive ER. By contrast, very few of the ARO-ir cells were double-labeled in the preoptic area and in the septum. More than 80% of the aromatase-containing cells contained no ER in these regions. This suggests that the estrogens, which are formed centrally by aromatization of testosterone, might not exert their biological effects through binding with the classical nuclear ER. The fact that significant amounts of aromatase activity are found in synaptosomes purified by differential centrifugation and that aromatase immunoreactivity is observed at the electron microscope level in synaptic boutons suggests that aromatase might produce estrogens that act at the synaptic level as neurohormones or neuromodulators. [less ▲]

Detailed reference viewed: 8 (0 ULg)
Full Text
Peer Reviewed
See detailNeuroanatomical specificity in the expression of the immediate early gene c-fos following expression of appetitive and consummatory male sexual behaviour in Japanese quail
Taziaux, Mélanie ULg; Cornil, Charlotte ULg; Dejace, C. et al

in European Journal of Neuroscience (2006), 23(7), 1869-1887

We investigated the neural sites related to the occurrence of appetitive (ASB) and consummatory (CSB) aspects of male sexual behaviour in Japanese quail. Castrated males treated with testosterone were ... [more ▼]

We investigated the neural sites related to the occurrence of appetitive (ASB) and consummatory (CSB) aspects of male sexual behaviour in Japanese quail. Castrated males treated with testosterone were exposed for 5 min to one of four experimental conditions: (i) free interaction with a female (CSB group); (ii) expression of rhythmic cloacal sphincter movements in response to the visual presentation of a female (ASB-F group); (iii) or a male (ASB-M group), and (iv) handling as a control manipulation. Brains were collected 90 min after the start of behavioural tests and stained by immunocytochemistry for the FOS protein. An increase in FOS expression was observed throughout the rostro-caudal extent of the medial preoptic nucleus (POM) in CSB males, whereas the view of a female (ASB-F) induced an increased FOS expression in the rostral POM only. In the CSB group, there was also an increase in FOS expression in the bed nucleus striae terminalis, and both the CSB and ASB-F groups exhibited increased FOS expression in aspects of the ventro-lateral thalamus (VLT) related to visual processing. Moreover, both the CSB and ASB-M groups showed increased FOS expression in the lateral septum. These data provide additional support to the idea that there is a partial anatomical dissociation between structures involved in the control of both aspects of male sexual behaviour and independently provide data consistent with a previous lesion study that indicated that the rostral and caudal POM differentially control the expression of ASB and CSB in quail. [less ▲]

Detailed reference viewed: 15 (2 ULg)