Browsing
     by title


0-9 A B C D E F G H I J K L M N O P Q R S T U V W X Y Z

or enter first few letters:   
OK
Full Text
Peer Reviewed
See detailModulation of hormonal signaling in the brain by steroid receptor coactivators.
Charlier, Thierry ULg; Balthazart, Jacques ULg

in Reviews in the Neurosciences (2005), 16(4), 339-57

Nuclear receptors, such as estrogen, glucocorticoid or thyroid hormone receptors, have been shown to play a critical role in brain development and physiology. The activity of these receptors is modulated ... [more ▼]

Nuclear receptors, such as estrogen, glucocorticoid or thyroid hormone receptors, have been shown to play a critical role in brain development and physiology. The activity of these receptors is modulated by the interaction with several proteins and, in particular, coactivators are required to enhance their transcriptional activity. The steroid receptor coactivators (SRC-1, -2 and -3) are currently the best characterized coactivators and we review here the current knowledge on the distribution and function of these proteins in the brain. Knock-out models and antisense techniques have demonstrated the requirement for SRC-1 and -2 in the brain, focusing mainly on steroid and thyroid hormone-dependent development and behavior. The precise function of SRC-3 in the brain is currently unknown but its presence throughout the brain suggests an important function. Although the molecular biology of SRCs is relatively well known, the in vivo control of their expression, post-translational modifications and time- and cell-specific interactions with the different nuclear receptors remain elusive. A complete understanding of hormone action on brain and behavior will not be attained until a better knowledge of coactivator physiology is achieved. [less ▲]

Detailed reference viewed: 23 (3 ULg)
Full Text
Peer Reviewed
See detailModulation of human chondrocyte metabolism by recombinant human interferon.
Henrotin, Yves ULg; Zheng, S X; Labasse, A H et al

in Osteoarthritis and Cartilage (2000), 8(6), 474-82

OBJECTIVES: Interferon gamma (IFN gamma) is found to be elevated in the synovial fluid of patients with rheumatoid arthritis and osteoarthritis, suggesting its implication in joint disease pathogenesis ... [more ▼]

OBJECTIVES: Interferon gamma (IFN gamma) is found to be elevated in the synovial fluid of patients with rheumatoid arthritis and osteoarthritis, suggesting its implication in joint disease pathogenesis. In this study, we investigated the effects of IFN gamma on the production of cytokines (IL-6, IL-8, IL-10), prostaglandin E(2)(PGE(2)), proteoglycans (PG), nitric oxide (NO), interleukin-1 receptor antagonist (IL-1ra) and stromelysin by non-stimulated and IL-1 beta-treated human chondrocytes. The role played by NO in the responses of chondrocytes to IFN gamma was also examined by incubation of chondrocytes with N(G)-monomethyl-L-arginine (L-NMMA), a competitive inhibitor of NO synthase. METHODS: Enzymatically isolated human chondrocytes were cultured for 48 h in the absence or presence of IL-1 beta, IFN gamma or N(G)-monomethyl-L-arginine (L-NMMA) added solely or in combination. The productions of IL-6, IL-8, IL-10, IL-1ra and stromelysin were measured by enzyme amplified sensitivity immunoassays (EASIA). PG and PGE(2)were quantified by specific radioimmunoassays (RIA). Nitrite concentrations in the culture supernatants were determined by a spectrophotometric method based upon the Griess reaction. RESULTS: As expected, IL-1 beta highly stimulated NO, IL-6, IL-8, IL-10, IL-1ra, PGE(2)and stromelysin synthesis, but dramatically decreased PG production. NO, IL-6, IL-1ra and PGE(2)production by non-stimulated chondrocytes was dose-dependently increased by IFN gamma while PG production was inhibited. In the absence of IL-1 beta, IL-10 was undetectable in the culture supernatants. At the doses of 10 and 100 U/ml, IFN gamma markedly inhibited the constitutive and IL-1 beta-stimulated IL-8, IL-10 and stromelysin productions. Interestingly, IFN gamma synergized with IL-1 beta to increase NO, IL-6, IL-1ra and to depress PG production. As previously reported, the inhibition of NO synthesis by the competitive inhibitor L-NMMA led to enhancement of IL-6, IL-8 and PGE(2)production by IL-1 beta treated chondrocytes, but did not significantly modify IL-10, PG and MMP-3 productions. Inhibition of NO synthase significantly inhibited the stimulating effect of IFN gamma on IL-6 and IL-1ra but did not affect the inhibitory effect of IFN gamma on IL-8, PG or stromelysin production. CONCLUSIONS: These findings suggest that IFN gamma and IL-1 synergistically stimulate the production of IL-6, IL-1ra, NO and PGE(2)and inhibit PG synthesis. By contrast, IL-1 beta and IFN gamma have opposite effects on IL-8, IL-10 and stromelysin productions. These effects are not reversed by L-NMMA, suggesting that NO is not the principal mediator involved in responses of chondrocytes to IFN gamma. [less ▲]

Detailed reference viewed: 30 (4 ULg)
Peer Reviewed
See detailModulation of Immunological Histamine Release from Human Lung Fragments by Stem Cell Factor, Il-3, Il-5 and Gm-Csf: Comparison with Human Leukocytes
Louis, Renaud ULg; Dowlati, A.; Weber, T. et al

in International Archives of Allergy & Immunology (1994), 105(1), 18-25

Because of the importance of cytokines in the regulation of allergic inflammation, we investigated the effects of SCF, IL-3, IL-5 and GM-CSF on immunological histamine release from sensitized human lung ... [more ▼]

Because of the importance of cytokines in the regulation of allergic inflammation, we investigated the effects of SCF, IL-3, IL-5 and GM-CSF on immunological histamine release from sensitized human lung fragments as well as human leukocytes. SCF (0.2-20 ng/ml) caused a concentration-related enhancement of anti-IgE (1/100) induced histamine release from lung fragments reaching maximally 64% at 20 ng/ml. In contrast, enhancement produced by IL-5, IL-3 and GM-CSF (0.2-20 ng/ml) was quite marginal and reached at best around 20% at the higher concentration, IL-5 being slightly more effective than IL-3 and GM-CSF. Further, SCF potentiated histamine release whatever the level of immunological control whereas potentiation by IL-5 primarily occurred when the amount of histamine release induced by the immunological control ranged between 5 and 10%. SCF acted synergistically with IL-5, producing a greater enhancement of histamine release than the sum of each cytokine used alone. Both SCF and, to a lesser extent, IL-5 potentiated anti-IgE-mediated histamine release regardless of passive sensitization of lung fragments. Unlike what was observed with lung fragments, IL-3, GM-CSF and to a lesser extent IL-5, were potent enhancing agents of anti-IgE (1/2,000)-induced histamine release from leukocytes. Maximal enhancement produced by IL-3 (20 ng/ml), GM-CSF (2 ng/ml) and IL-5 (20 ng/ml) reached 92%, 78% and 61%, respectively. By contrast, SCF (0.2-20 ng/ml) was ineffective on human leukocytes.(ABSTRACT TRUNCATED AT 250 WORDS) [less ▲]

Detailed reference viewed: 10 (1 ULg)
Full Text
Peer Reviewed
See detailModulation of intestinal urea cycle by dietary spermine in suckling rat
Gharbi, Myriam ULg; Powroznik, Brigitte; Mazzucchelli, Gabriel ULg et al

in Biochemical and Biophysical Research Communications (2005), 336(4), 1119-1124

Argininosuccinate synthetase, an ubiquitous enzyme in mammals, catalyses the formation of argininosuccinate, the precursor of arginine. Arginine is recognised as an essential amino acid in foetuses and ... [more ▼]

Argininosuccinate synthetase, an ubiquitous enzyme in mammals, catalyses the formation of argininosuccinate, the precursor of arginine. Arginine is recognised as an essential amino acid in foetuses and neonates, but also as a conditionally essential amino acid in adults. Argininosuccinate synthetase is initially expressed in enterocytes during the developmental period, it disappeared from this organ then appeared in the kidneys. Although the importance of both intestinal and renal argininosuccinate synthetases has been recognised for a long time, nutrients have not yet been identified as inducers of the gene expression. In the context of a proteomic screening of intestinal modifications induced by dietary spermine in suckling rats, we showed that argininosuccinate synthetase and carbamoyl phosphate synthase disappeared from enterocytes after this treatment. The disappearance of argininosuccinate synthetase in small intestine was confirmed by immunodetection. Expression of carbamoyl phosphate synthase and argininosuccinate synthetase coding genes decreased also after spermine administration. Expression of other urea cycle enzyme coding genes was modulated by spermine administration: argininosuccinate lyase decreased and arginase increased. Our results fit with the developmental variation of argininosuccinate synthetase and carbamoyl phosphate synthase. Modulation of the gene expression for several urea cycle enzymes suggests a coordination between all the pathway steps and switch toward polyamine (or proline and glutamate) biosynthesis from ornithine. (c) 2005 Elsevier Inc. All rights reserved. [less ▲]

Detailed reference viewed: 69 (10 ULg)
Full Text
Peer Reviewed
See detailModulation of laminin receptor expression by estrogen and progestins in human breast cancer cell lines.
Castronovo, Vincenzo ULg; Taraboletti, G.; Liotta, L. A. et al

in Journal of the National Cancer Institute (1989), 81(10), 781-8

The effects of estradiol and two synthetic progestins (ORG2058 and R5020) on the expression of the high-affinity, metastasis-associated laminin receptor in two human breast carcinoma cell lines were ... [more ▼]

The effects of estradiol and two synthetic progestins (ORG2058 and R5020) on the expression of the high-affinity, metastasis-associated laminin receptor in two human breast carcinoma cell lines were examined. The T47D cell line contains estrogen and progesterone receptors, but the MDA-MB 231 cell line lacks both receptors. Treatment of T47D cells with 10(-9) M estradiol alone results in a three-fold increase (P less than or equal to .05) in the steady-state level of laminin receptor mRNA determined by RNA blot analysis as well as in cell-surface, laminin receptor expression that is evaluated by immunofluorescence. No effects of estradiol on the receptor-negative MDA-MB 231 cells were observed. Untreated and steroid-treated MDA-MB 231 cells had higher levels of laminin receptor mRNA than did untreated or estradiol-treated T47D cells. A more dramatic increase (five-fold; P less than or equal to .005) of mRNA and cell-surface expression in T47D cells was observed after treatment with estradiol plus 10(-8) M progestin or with progestin alone. Estradiol treatment also increased chemotaxis and haptotaxis of T47D cells but not of MDA-MB 231 cells to laminin; it had no effect on the attachment of these latter cells to laminin. Interestingly, treatment with estradiol plus progestin or progestin alone significantly increased the attachment of T47D cells to laminin but did not have an effect on either haptotaxis or chemotaxis to laminin. These results suggest that the various cell-laminin interactions are mediated by different mechanisms. The augmentation of laminin receptor mRNA by estrogen and progesterone treatment in hormone receptor-positive cells, but not in cells that lack these receptors, may relate functionally to the difference in the clinical aggressiveness between classes of breast cancers. [less ▲]

Detailed reference viewed: 9 (0 ULg)
Full Text
Peer Reviewed
See detailModulation of lung inflammation in the control of bovine respiratory disease
Van de Weerdt, ML; Lekeux, Pierre ULg

in Bovine Practitioner (1997), 31.1

The purpose of this paper is to review the potential strategies which could improve the treatment of respiratory disorders in general and the modulation of lung inflammation in particular. Possible ... [more ▼]

The purpose of this paper is to review the potential strategies which could improve the treatment of respiratory disorders in general and the modulation of lung inflammation in particular. Possible preventive treatments will not be discussed in this review. [less ▲]

Detailed reference viewed: 30 (3 ULg)
Full Text
Peer Reviewed
See detailModulation of medial prefrontal and inferior parietal cortices when thinking about past, present, and future selves.
D'Argembeau, Arnaud ULg; Stawarczyk, David ULg; Majerus, Steve ULg et al

in Social Neuroscience (2010), 5

Recent functional neuroimaging studies have shown that reflecting on representations of the present self versus temporally distant selves is associated with higher activity in the medial prefrontal cortex ... [more ▼]

Recent functional neuroimaging studies have shown that reflecting on representations of the present self versus temporally distant selves is associated with higher activity in the medial prefrontal cortex (MPFC). In the current fMRI study, we investigated whether this effect of temporal perspective is symmetrical between the past and future. The main results revealed that the MPFC showed higher activity when reflecting on the present self than when reflecting on past and future selves, with no difference between past and future selves. Temporal perspective also modulated activity in the right inferior parietal cortex but in the opposite direction, activity in this brain region being higher when reflecting on past and future selves relative to the present self (with again no difference between past and future selves). These findings show that differences in brain activity when thinking about current versus temporally distant selves are symmetrical between the past and the future. It is suggested that by processing degrees of self-relatedness, the MPFC might sustain the process of identifying oneself with current representations of the self, whereas the right inferior parietal cortex might be involved in distinguishing the present self from temporally distant selves. [less ▲]

Detailed reference viewed: 195 (15 ULg)
See detailModulation of melanogenesis of B16 melanoma cells in culture
Gillet, Marie-Claire ULg; Bassleer, R.

Conference (1981, May)

Detailed reference viewed: 5 (1 ULg)
Full Text
Peer Reviewed
See detailModulation of Nod2-dependent NF-kappa B signaling by the actin cytoskeleton
Legrand, Sylvie ULg; Kustermans, Gaëlle ULg; Bex, Françoise et al

in Journal of Cell Science (2007), 120(7), 1299-1310

Actin disruption by CytochalasinD (CytD) and LatrunculinB (LatB) induced NF-kappa B activation in myelomonocytic and intestinal epithelial cells. In an attempt to elucidate the mechanism by which actin ... [more ▼]

Actin disruption by CytochalasinD (CytD) and LatrunculinB (LatB) induced NF-kappa B activation in myelomonocytic and intestinal epithelial cells. In an attempt to elucidate the mechanism by which actin disruption induced IKK activation, we studied the human Nod2 protein, which was able to induce NF-kappa B activation and whose expression was restricted to myelomonocytic and intestinal epithelial cells. Nod2 is thought to play key roles in pathogen defence through sensing bacteria and generating an inflammatory immune response. We showed that actin disruption by CytD significantly and specifically increased Nod2-mediated NF-kappa B signaling. Nod2 was fully partitioned in the Triton-X-100-insoluble fraction but translocated into the soluble fraction after CytD treatment, demonstrating that the presence of Nod2 in the detergent-insoluble pellet was specific to actin cytoskeleton. Confocal analysis also revealed a Nod2 colocalization with membrane-associated F-actin. Colocalization and co-immunoprecipitation assays with endogenous Rac1 have shown that Nod2 associated with activated Rac1 in membrane ruffles through both its N-terminal caspase recruitment domains (CARD) and C-terminal leucine-rich repeats (LRRs). Membrane ruffle disruption by a Rac1 dominant negative form primed Nod2-dependent NF-kappa B signaling. The recruitment of Nod2 in Rac-induced dynamic cytoskeletal structures could be a strategy to both repress the Nod2-dependent NF-kappa B signaling in unstimulated cells and rapidly mobilize Nod2 during bacterial infection. [less ▲]

Detailed reference viewed: 23 (5 ULg)
Full Text
Peer Reviewed
See detailModulation of Proteolytic Activity During Neuritogenesis in the Pc12 Nerve Cell: Differential Control of Plasminogen Activator and Plasminogen Activator Inhibitor Activities by Nerve Growth Factor and Dibutyryl-Cyclic Amp
Leprince, Pierre ULg; Rogister, Bernard ULg; Delree, P. et al

in Journal of Neurochemistry (1991), 57(2), 665-74

Extracellular proteolysis is considered to be required during neuritic outgrowth to control the adhesiveness between the growing neurite membrane and extracellular matrix proteins. In this work, PC12 ... [more ▼]

Extracellular proteolysis is considered to be required during neuritic outgrowth to control the adhesiveness between the growing neurite membrane and extracellular matrix proteins. In this work, PC12 nerve cells were used to study the modulation of proteolytic activity during neuronal differentiation. PC12 cells were found to contain and release a 70-75-kDa tissue-type plasminogen activator (tPA) and a much less abundant 48-kDa urokinase-type plasminogen activator. A plasminogen activator inhibitor (PAI) activity with molecular sizes of 54 and 58 kDa was also detected in PC12 cell conditioned medium and formed high-molecular-mass complexes with released tPA. Release of PAI activity was dependent on treatment with nerve growth factor (NGF), whereas tPA synthesis and release were under control of a cyclic AMP-dependent mechanism and increased on treatment with dibutyryl-cyclic AMP [(But)2cAMP] or cholera toxin. Simultaneous treatment with NGF and (But)2cAMP resulted in increases of both tPA and PAI release and enhancement of tPA-PAI complex formation. The resulting plasminogen activator activity in conditioned medium was high in (But)2cAMP-treated cultures with short neuritic outgrowth but remained low in NGF- or NGF plus (But)2cAMP-treated cultures, where neurite extension was, respectively, large and very large. These results suggest that excess proteolytic activity may be detrimental to neuritic outgrowth and that not only PAI release but also tPA-PAI complex formation is associated with production of large and stable neuritic outgrowth. This can be understood as an involvement of PAI in the protection against neurite-destabilizing proteolytic activity. [less ▲]

Detailed reference viewed: 19 (4 ULg)
Full Text
Peer Reviewed
See detailModulation of small conductance calcium-activated potassium (SK) channels: a new challenge in medicinal chemistry.
Liégeois, Jean-François ULg; Mercier, Frédéric ULg; Graulich, Amaury et al

in Current Medicinal Chemistry (2003), 10(8), 625-47

Small conductance calcium-activated potassium (SK) channels are found in many types of neurons as well as in some other cell types. These channels are selective for K(+) and open when intracellular Ca(2 ... [more ▼]

Small conductance calcium-activated potassium (SK) channels are found in many types of neurons as well as in some other cell types. These channels are selective for K(+) and open when intracellular Ca(2+) rises to omega 500 nM. In neurons, this occurs during and after an action potential. Activation of SK channels hyperpolarizes the membrane, thus reducing cell excitability for several tens or hundreds of milliseconds. This phenomenon is called a afterhyperpolarization (AHP). Three subtypes of SK channels (SK1, SK2, SK3) have been cloned and exhibit a differential localization in the brain. SK channels may play a role in physiological and pathological conditions. They may be involved in the control of memory and cognition. Moreover, they are heavily expressed in the basal ganglia (in particular in the substantia nigra, pars compacta) and in the limbic system, suggesting that they may modulate motricity and emotional behaviour. Based on these facts, SK channel subtypes may be a suitable target for developing novel therapeutic agents, but more work is needed to validate these targets. Hence, there is a great need for selective ligands. Moreover, although the risk of peripheral side-effects for SK channel modulators appears to be low, some questions remain to be investigated. Currently, different molecules are known as SK channel modulators. Apamin is a very potent peptidic agent; it produces a strong blockade of these targets which is only very slowly reversible and it has limited selectivity. Dequalinium was found to be an effective blocker. Different chemical modulations on the dequalinium structure led to the discovery of highly potent bis-quinolinium derivatives such as UCL 1684. Other bis-(2-amino-benzimidazole) derivatives are in development. On the other hand, quaternary salts of bicuculline were reported to be effective in inhibiting AHPs. More recent developments on structurally-related molecules revealed that methyl-laudanosine is a new interesting tool for exploring SK channel pharmacology. Finally, a family of compounds has been shown to facilitate SK channel opening. Such compounds may be useful in treating disorders involving neuronal hyperexcitability. [less ▲]

Detailed reference viewed: 115 (30 ULg)
See detailModulation of steroid action: Importance of coactivators
Charlier, Thierry ULg

Scientific conference (2012)

Detailed reference viewed: 8 (0 ULg)
See detailModulation of steroid action: Importance of steroid binding globulins
Charlier, Thierry ULg

Scientific conference (2008)

Detailed reference viewed: 5 (0 ULg)
Full Text
See detailModulation of steroid activity by transcription coactivators in songbirds
Charlier, Thierry ULg; Auger, Catherine J; Balthazart, Jacques ULg et al

in Hormones & Behavior (2003), 44

Songbirds have developed a specialized, steroid-dependent telencephalic vocal control system for the production of learned vocalization. Recent progress in the study of the mechanisms by which steroid ... [more ▼]

Songbirds have developed a specialized, steroid-dependent telencephalic vocal control system for the production of learned vocalization. Recent progress in the study of the mechanisms by which steroid receptors act on the eukaryotic genome has highlighted the role of a newly discovered protein family, the Nuclear Receptor Coactivators. More specifically, the CREB-binding protein (CBP) and the Steroid Receptor Coactivator-1 (SRC-1) have been shown to be actively involved in mediating steroid hormone action in the developing rat brain. The distribution of the coactivator SRC-1 was analyzed in canaries by in situ hybridization. A very broad but heterogeneous distribution of the transcript was observed, mainly in steroid-sensitive areas of the hypothalamus, the song control system and several catecholaminergic areas. The presence of SRC-1 in these regions was also confirmed by immunocytochemistry. A similar very high concentration of the coactivator CBP protein was also found in steroid-sensitive areas of the hypothalamus and in the song system. Sex differences in SRC-1 mRNA concentration were detected in HVC and in area X. Moreover, preliminary data obtained independently in starlings (CBP) and in quail (SRC-1) suggest that the expression of coactivators is regulated by steroids as well as by photoperiod. The presence of these steroid receptor coactivators in the telencephalic song control nuclei and in catecholaminergic cell groups that innervate the song system and their possible regulation by photoperiod and/or steroids support the idea that SRC-1 and CBP could play an important role in the control of singing behavior by modulating estrogen and androgen receptor action. [less ▲]

Detailed reference viewed: 8 (4 ULg)
Full Text
See detailModulation of steroid-dependent male sexual behavior and neural gene expression: A role for steroid receptor co-activators
Charlier, Thierry ULg; Ball, Gregory F; Balthazart, Jacques ULg

in Trabajos del Instituto Cajal (2005), 80

One of the best-characterized actions of steroids is the regulation of brain areas involved in endocrine function and in the activation of reproductive behaviors in male and female vertebrates. Progress ... [more ▼]

One of the best-characterized actions of steroids is the regulation of brain areas involved in endocrine function and in the activation of reproductive behaviors in male and female vertebrates. Progress in the understanding of the mechanisms that control the expression of the eukaryotic genome by nuclear receptors has brought forward the importance of steroid receptor coactivators in mediating efficient gene transcription. However, little is know about the specific physiological requirements of these coactivators in vivo. In Japanese quail, testosterone treatment of castrated males restores the full copulatory behavior and increases the volume of the sexually dimorphic medial preoptic nucleus (POM) to the level observed in intact males [1]. Testosterone also affects a number of sexually dimorphic neurochemical characteristics such as the vasotocineric innervation of the septum and meadial preoptic nucleus [2]. The quail therefore provides an excellent model to study steroid-dependent sexual behavior and the associated neuroplasticity and should provide insights into the modulation of steroid action by steroid receptor coactivators. The present studies were focused on the steroid receptor co-activator-1 (SRC-1), which was already shown to be involved in the process of sexual differentiation of brain and behavior in rats [3]. We first amplified by RT-PCR from quail brains a 3,411bp fragment highly homologous with the chicken (94.5%) and mammalian (70%) SRC-1 and designed digoxigenin-labeled oligonucleotides for in situ hybridization. A broad distribution of SRC-1 transcripts was observed throughout the male quail brain. A particularly dense coactivator expression was observed in limbic (e.g. POM, nucleus striae terminalis) and mesencephalic (e.g. substantia grisea centralis) nuclei associated with the control of male sexual behavior [4]. Because male and female quail exhibit a very pronounced sexual dimorphism in the steroid-dependent mechanisms that activate male-typical copulatory behavior, we investigated the potential role of SRC-1 in the sexually differentiated responses to steroids by quantifiying the SRC-1 mRNA by real time quantitative polymerase chain reaction (qPCR) and the corresponding protein by western blot (WB). Contrary to previous results, which had identified a higher SRC-1 mRNA expression in the POM of males compared to females [4], we found in two separate experiments that sexually mature females had higher concentrations of SRC-1 in the preoptic area-hypothalamus (HPOA) compared to males. Additional studies should be carried out to identify the origins of this discrepancy but seasonality and time of the day when brains were collected are potentially involved. We also quantified the SRC-1 mRNA and protein in the preoptic area-hypothalamus (HPOA) of castrated males treated or not with testosterone. SRC-1 mRNA was increased by testosterone in two independent experiments but not in a third one. This difference is likely due to the differential manipulations of the birds during these experiments. Birds had been repeatedly handled to test their sexual behavior in the first experiment and we showed that stress tends to decrease the coactivator expression in the male HPOA. This interpretation is strengthened by recent work in rats indicating that stress regulates SRC-1 expression in hypothalamus and hippocampus [5]. More surprisingly, we found a significant correlation between the expression of SRC-1 and the time of the day when birds were killed in the optic lobes, hippocampus and hindbrain. The expression of SRC-1 in the optic lobes increased throughout the day, independently of sex, testosterone treatment or stress. In the hippocampus and hindbrain, the coactivator concentration varied in opposite directions during the morning and afternoon and reached respectively its lowest or highest concentration around the middle of the day, here again independently of sex, stress and hormonal treatment. Together, these data support the idea that SRC-1 is not constitutively expressed but regulated by steroids, stress and possibly other unidentified factors. Differential controls also appear to take place in specific brain nuclei and these differential controls should be further analyzed by immunohistochemistry and in situ hybridization. A second part of our work was dedicated to the study of the physiological significance of SRC-1 whith the use of daily intra-cerebroventricular injections of modified antisense (AS) oligonucleotides (Locked nucleic acid LNA) to disrupt SRC-1 expression in the POM. AS injections significantly reduced the expression of male copulatory behavior in response to exogenous testosterone compared to control animals (Ctrl group) that received the vehicle alone or scrambled (SC) oligonucleotides. Moreover, sexual behavior was restored and even enhanced within 48 hours after interruption of AS injection (ASSC group). Western blot analysis confirmed the decrease of SRC-1 expression in AS animals and demonstrated an over-expression of the coactivator in ASSC animals. The effects of SRC-1 knock down on behavior was related to a reduced POM volume defined by Nissl-staining and aromatase immunohistochemistry. The aromatase index, indicative of the relative amount of aromatase in the POM as well as the vasotocinergic innervation of this nucleus were higher in the Ctrl group. Taken together, these findings indicate that SRC-1 functions as a critical regulatory molecule in the brain to modulate steroid-dependent gene transcription and behavior. The study of the modulation of nuclear receptors activity by different co-regulatory proteins is still in its infancy. Abnormal co-activator expression or function is currently being linked to some endocrine/neurological disorders in humans and it is thus critical to understand how co-activator expression and function are controlled in the developing as well as in the adult brain. [less ▲]

Detailed reference viewed: 40 (3 ULg)
See detailModulation of steroid-dependent male sexual behavior and neural gene expression: a role for steroid receptor co-activators
Charlier, Thierry ULg; Ball, Gregory F.; Balthazart, Jacques ULg

in Dawson, Alister; Sharp, Peter J. (Eds.) Functional anvian endocrinology (2005)

Detailed reference viewed: 9 (3 ULg)