Browsing
     by title


0-9 A B C D E F G H I J K L M N O P Q R S T U V W X Y Z

or enter first few letters:   
OK
Full Text
Peer Reviewed
See detailInorganic carbon fixation by chemosynthetic ectosymbionts and nutritional transfers to the hydrothermal vent host-shrimp Rimicaris exoculata
Ponsard, Julie ULg; Cambon-Bonavita, Marie-Anne; Zbinden, Magali et al

in ISME Journal (The) (2013), 7

Detailed reference viewed: 281 (98 ULg)
Full Text
See detailInorganic carbon in the Tana River Basin (Kenya): Distribution, composition and process rates
Van den Meersche, K.; Tamooh, F.; Meysman, F. et al

Conference (2011)

Detailed reference viewed: 10 (1 ULg)
Full Text
Peer Reviewed
See detailInorganic-binding peptides as tools for surface quality control
Vreuls, Christelle ULg; Zocchi, Germaine ULg; Genin, Alexis ULg et al

in Journal of Inorganic Biochemistry (2010)

This paper highlights an innovative application of inorganic-binding peptides as quality control tools for detecting defects on inorganic surfaces of any shape. The approach involves attaching a ... [more ▼]

This paper highlights an innovative application of inorganic-binding peptides as quality control tools for detecting defects on inorganic surfaces of any shape. The approach involves attaching a fluorescent label to an inorganic-binding peptide and exploiting the peptide's high binding specificity to detect, by simple fluorescence microscopy, chemical composition defects of microm size and crystallographic state defects. Proof of concept was demonstrated by monitoring binding of a previously isolated ZnO-binding peptide to galvanized steel substrates. The approach was further validated for TiO(2) coatings and stainless steel, with two new, specific inorganic-binding peptides isolated by phage display. [less ▲]

Detailed reference viewed: 49 (24 ULg)
Full Text
Peer Reviewed
See detailInositide-specific phospholipase c beta1 gene deletion is a rare event in myelodysplastic syndromes.
Herens, Christian ULg; Ketelslegers, O.; Tassin, Françoise ULg et al

in Leukemia (2006), 20(3), 521-2522-3

Detailed reference viewed: 16 (8 ULg)
Full Text
Peer Reviewed
See detailInositol 1,3,4,5-tetrakisphosphate controls proapoptotic Bim gene expression and survival in B cells.
Maréchal, Y.; Pesesse, X.; Jia, Y. et al

in Proceedings of the National Academy of Sciences of the United States of America (2007), 104

The contribution of the B isoform of inositol 1,4,5-trisphosphate [Ins(1,4,5)P(3)] 3-kinase (or Itpkb) and inositol 1,3,4,5-tetrakisphosphate [Ins(1,3,4,5)P(4)], its reaction product, to B cell function ... [more ▼]

The contribution of the B isoform of inositol 1,4,5-trisphosphate [Ins(1,4,5)P(3)] 3-kinase (or Itpkb) and inositol 1,3,4,5-tetrakisphosphate [Ins(1,3,4,5)P(4)], its reaction product, to B cell function and development remains unknown. Here, we show that mice deficient in Itpkb have defects in B cell survival leading to specific and intrinsic developmental alterations in the B cell lineage and antigen unresponsiveness in vivo. The decreased B cell survival is associated with a decreased phosphorylation of Erk1/2 and increased Bim gene expression. B cell survival, development, and antigen responsiveness are normalized in parallel to reduced expression of Bim in Itpkb(-/-) Bim(+/-) mice. Analysis of the signaling pathway downstream of Itpkb revealed that Ins(1,3,4,5)P(4) regulates subcellular distribution of Rasa3, a Ras GTPase-activating protein acting as an Ins(1,3,4,5)P(4) receptor. Together, our results indicate that Itpkb and Ins(1,3,4,5)P(4) mediate a survival signal in B cells via a Rasa3-Erk signaling pathway controlling proapoptotic Bim gene expression [less ▲]

Detailed reference viewed: 22 (4 ULg)
Full Text
Peer Reviewed
See detailInositol 1,3,4,5-tetrakisphosphate is essential for normal T lymphocyte development
Pouillon, V.; Hascakova-Bartova, R.; Pajak, B. et al

in Nature Immunology (2003), 4

Inositol 1,4,5-trisphosphate (Ins(1,4,5)P(3)) is phosphorylated by Ins(1,4,5)P(3) 3-kinase, generating inositol 1,3,4,5-tetrakisphosphate (Ins(1,3,4,5)P(4)). The physiological function of Ins(1,3,4,5)P(4 ... [more ▼]

Inositol 1,4,5-trisphosphate (Ins(1,4,5)P(3)) is phosphorylated by Ins(1,4,5)P(3) 3-kinase, generating inositol 1,3,4,5-tetrakisphosphate (Ins(1,3,4,5)P(4)). The physiological function of Ins(1,3,4,5)P(4) is still unclear, but it has been reported to be a potential modulator of calcium mobilization. Disruption of the gene encoding the ubiquitously expressed Ins(1,4,5)P(3) 3-kinase isoform B (Itpkb) in mice caused a severe T cell deficiency due to major alterations in thymocyte responsiveness and selection. However, we were unable to detect substantial defects in Ins(1,4,5)P(3) amounts or calcium mobilization in Itpkb(-/-) thymocytes. These data indicate that Itpkb and Ins(1,3,4,5)P(4) define an essential signaling pathway for T cell precursor responsiveness and development [less ▲]

Detailed reference viewed: 24 (6 ULg)
Full Text
Peer Reviewed
See detailInositol 1,4,5-trisphosphate 3-kinase B (Itpkb) controls survival, proliferation and cytokine production in mouse peripheral T cells
Pouillon, Valérie; Maréchal, Yoann; Frippiat, Christophe et al

in Advances in Biological Regulation (2013), 53(1), 39-50

Mice genetically-deficient for the B isoform of the inositol 1,4,5-trisphosphate 3-kinase (or Itpkb) have a severe defect in thymocytes differentiation and thus lack peripheral T cells. In order to study ... [more ▼]

Mice genetically-deficient for the B isoform of the inositol 1,4,5-trisphosphate 3-kinase (or Itpkb) have a severe defect in thymocytes differentiation and thus lack peripheral T cells. In order to study the functional role of Itpkb in peripheral T cells, we constructed a new mouse where a transgene encoding mouse Itpkb is specifically and transiently expressed in thymocytes of Itpkb-/- mice. This allows a partial rescue of mature thymocyte/T cell differentiation and thus the functional characterization of peripheral T cells lacking Itpkb. We show here that Itpkb-/- CD4+ and CD8+ peripheral T cells present important functional alterations. Indeed, an increased activated/memory phenotype as well as a decreased proliferative capacity and survival were detected in these T cells. These Itpkb-deficient peripheral T cells have also an increased capacity to secrete cytokines upon stimulation. Together, our present results define the important role of Itpkb in peripheral mature T cell fate and function in mouse, suggesting a potential role for Itpkb in autoimmunity. [less ▲]

Detailed reference viewed: 53 (18 ULg)
Full Text
Peer Reviewed
See detailInositol 1,4,5-trisphosphate 3-kinase B controls survival and prevents anergy in B cells
Marechal, Y.; Queant, S.; Polizzi, S. et al

in Immunobiology (2011), 216

Inositol 1,4,5-trisphosphate 3-kinase B (or Itpkb) and inositol 1,3,4,5-tetrakisphosphate (Ins(1,3,4,5)P4), its reaction product, play an important role in the control of B lymphocyte fate and function in ... [more ▼]

Inositol 1,4,5-trisphosphate 3-kinase B (or Itpkb) and inositol 1,3,4,5-tetrakisphosphate (Ins(1,3,4,5)P4), its reaction product, play an important role in the control of B lymphocyte fate and function in vivo. In order to investigate the fine mechanisms of Itpkb and Ins(1,3,4,5)P4 action in B cells, we crossed Itpkb(-/-) mice with transgenic mice expressing a 3-83mudelta B cell receptor (BCR) specific for membrane-bound MHC-I H2-K(b) and H2-K(k) molecules. On a non-deleting H2-K(d) genetic background, we show that Itpkb is important for the control of Bim protein expression and B cell survival rather than for the control of B cell development from one stage to another. Analyses of cell surface markers expression, proapoptotic Bim protein expression, in vitro survival and in vivo turnover demonstrated that BCR transgenic Itpkb(-/-) B cells exhibit an anergic phenotype with the notable exception of their enhanced antigen-induced calcium signalling. On a deleting H2-K(b) genetic background, we show that Itpkb is not essential for BCR editing or negative selection. These data establish Itpkb as an important regulator of B cell survival and anergy in vivo. [less ▲]

Detailed reference viewed: 23 (1 ULg)
Full Text
Peer Reviewed
See detailThe inositol Inpp5k 5-phosphatase affects osmoregulation through the vasopressin-aquaporin 2 pathway in the collecting system.
Pernot, E.; Terryn, S.; Cheong, S. C. et al

in Pflügers Archiv : European Journal of Physiology (2011), 462

Inositol Inpp5k (or Pps, SKIP) is a member of the inositol polyphosphate 5-phosphatases family with a poorly characterized function in vivo. In this study, we explored the function of this inositol 5 ... [more ▼]

Inositol Inpp5k (or Pps, SKIP) is a member of the inositol polyphosphate 5-phosphatases family with a poorly characterized function in vivo. In this study, we explored the function of this inositol 5-phosphatase in mice and cells overexpressing the 42-kDa mouse Inpp5k protein. Inpp5k transgenic mice present defects in water metabolism characterized by a reduced plasma osmolality at baseline, a delayed urinary water excretion following a water load, and an increased acute response to vasopressin. These defects are associated with the expression of the Inpp5k transgene in renal collecting ducts and with alterations in the arginine vasopressin/aquaporin-2 signalling pathway in this tubular segment. Analysis in a mouse collecting duct mCCD cell line revealed that Inpp5k overexpression leads to increased expression of the arginine vasopressin receptor type 2 and increased cAMP response to arginine vasopressin, providing a basis for increased aquaporin-2 expression and plasma membrane localization with increased osmotically induced water transport. Altogether, our results indicate that Inpp5k 5-phosphatase is important for the control of the arginine vasopressin/aquaporin-2 signalling pathway and water transport in kidney collecting ducts. [less ▲]

Detailed reference viewed: 16 (3 ULg)
Full Text
Peer Reviewed
See detailThe inositol phosphatase SHIP-1 inhibits NOD2-induced NF-κB activation by disturbing the interaction of XIAP with RIP2
Condé, Claude ULg; Rambout, Xavier ULg; Lebrun, Marielle ULg et al

in PLoS ONE (2012)

SHIP-1 is an inositol phosphatase predominantly expressed in hematopoietic cells. Over the ten past years, SHIP-1 has been described as an important regulator of immune functions. Here, we characterize a ... [more ▼]

SHIP-1 is an inositol phosphatase predominantly expressed in hematopoietic cells. Over the ten past years, SHIP-1 has been described as an important regulator of immune functions. Here, we characterize a new inhibitory function for SHIP-1 in NOD2 signaling. NOD2 is a crucial cytoplasmic bacterial sensor that activates proinflammatory and antimicrobial responses upon bacterial invasion. We observed that SHIP-1 decreases NOD2-induced NF-κB activation in macrophages. This negative regulation relies on its interaction with XIAP. Indeed, we observed that XIAP is an essential mediator of the NOD2 signaling pathway that enables proper NF-κB activation in macrophages. Upon NOD2 activation, SHIP-1 C-terminal proline rich domain (PRD) interacts with XIAP, thereby disturbing the interaction between XIAP and RIP2 in order to decrease NF-κB signaling. [less ▲]

Detailed reference viewed: 39 (16 ULg)
Full Text
Peer Reviewed
See detailInositol trisphosphate 3-kinase B (InsP3KB) as a physiological modulator of myelopoiesis
Jia, Y.; Loison, F.; Erneux, C. et al

in Proceedings of the National Academy of Sciences of the United States of America (2008), 105

Inositol trisphosphate 3-kinase B (InsP3KB) belongs to a family of kinases that convert inositol 1,4,5-trisphosphate (Ins(1,4,5)P3 or IP3) to inositol 1,3,4,5-tetrakisphosphate (Ins(1,3,4,5)P4). Previous ... [more ▼]

Inositol trisphosphate 3-kinase B (InsP3KB) belongs to a family of kinases that convert inositol 1,4,5-trisphosphate (Ins(1,4,5)P3 or IP3) to inositol 1,3,4,5-tetrakisphosphate (Ins(1,3,4,5)P4). Previous studies have shown that disruption of InsP3KB leads to impaired T cell and B cell development as well as hyperactivation of neutrophils. Here, we demonstrate that InsP3KB is also a physiological modulator of myelopoiesis. The InsP3KB gene is expressed in all hematopoietic stem/progenitor cell populations. In InsP3KB null mice, the bone marrow granulocyte monocyte progenitor (GMP) population was expanded, and GMP cells proliferated significantly faster. Consequently, neutrophil production in the bone marrow was enhanced, and the peripheral blood neutrophil count was also substantially elevated in these mice. These effects might be due to enhancement of PtdIns(3,4,5)P3/Akt signaling in the InsP3KB null cells. Phosphorylation of cell cycle-inhibitory protein p21(cip1), one of the downstream targets of Akt, was augmented, which can lead to the suppression of the cell cycle-inhibitory effect of p21 [less ▲]

Detailed reference viewed: 25 (8 ULg)
Full Text
Peer Reviewed
See detailInositol trisphosphate 3-kinase B is increased in human Alzheimer brain and exacerbates mouse Alzheimer pathology
Stygelbout, V.; Leroy, K.; Pouillon, V. et al

in Brain : A Journal of Neurology (2014), 137

S. Schurmans and J.-P. Brion contributed equally to this work Corresponding author: S. Schurmans, Laboratoire de Génétique Fonctionnelle, GIGA-Research Centre, Building 34, Université de Liège, rue de ... [more ▼]

S. Schurmans and J.-P. Brion contributed equally to this work Corresponding author: S. Schurmans, Laboratoire de Génétique Fonctionnelle, GIGA-Research Centre, Building 34, Université de Liège, rue de l’Hôpital 1, 4000-Liège, Belgium. Abstract: Inositol (1,4,5) trisphosphate 3-kinase B phosphorylates inositol 1,4,5-trisphosphate into inositol 1,3,4,5-tetrakisphosphate and controls signal transduction in various hematopoietic cells. Surprisingly, it has been reported that Inositol (1,4,5) trisphosphate 3-kinase B mRNA level is significantly increased in the cerebral cortex of Alzheimer patients, compared to control subjects. Since Extracellular signal-regulated kinases 1/2 activation is increased in Alzheimer brain and since Inositol (1,4,5) trisphosphate 3-kinase B is a regulator of Extracellular signal-regulated kinases 1/2 activation in some hematopoietic cells, we tested whether this increased activation in Alzheimer’s disease might be related to an increased activity of Inositol (1,4,5) trisphosphate 3-kinase B. We show here that Inositol (1,4,5) trisphosphate 3-kinase B protein level was 3 fold increased in the cerebral cortex of most Alzheimer patients, compared to control subjects, and accumulated in dystrophic neurites associated to amyloid plaques. In mouse Neuro-2a neuroblastoma cells, Inositol (1,4,5) trisphosphate 3-kinase B overexpression was associated with increased cell apoptosis and increased β-secretase 1 activity leading to amyloid-β peptides overproduction. In this cellular model, an inhibitor of Mitogen-activated kinase kinases 1/2 completely prevented amyloid-β peptides overproduction. Transgenic overexpression of Inositol (1,4,5) trisphosphate 3-kinase B in mouse forebrain neurons was not sufficient to induce amyloid plaques formation or TAU hyperphosphorylation. However, in the 5X Familial Alzheimer’s Disease mouse model, neuronal Inositol (1,4,5) trisphosphate 3-kinase B overexpression significantly increased Extracellular signal-regulated kinases 1/2 activation and β-secretase 1 activity, resulting in exacerbated Alzheimer pathology as shown by increased astrogliosis, amyloid-β40 peptide production and TAU hyperphosphorylation. No impact on pathology was observed in the 5X Familial Alzheimer’s Disease mouse model when a catalytically inactive Inositol (1,4,5) trisphosphate 3-kinase B protein was overexpressed. Together, our results point to the Inositol (1,4,5) trisphosphate 3-kinase B /Inositol 1,3,4,5-tetrakisphosphate/Extracellular signal-regulated kinases 1/2 signaling pathway as an important regulator of neuronal cell apoptosis, Amyloid precursor protein processing and TAU phosphorylation in Alzheimer’s disease, and suggest that Inositol (1,4,5) trisphosphate 3-kinase B could represent a new target for reducing pathology in human AD patients with increased cortical Inositol (1,4,5) trisphosphate 3-kinase B expression. [less ▲]

Detailed reference viewed: 36 (15 ULg)
Full Text
Peer Reviewed
See detailINPP5E mutations cause primary cilium signaling defects, ciliary instability and ciliopathies in human and mouse
Jacoby, Monique; Cox, James J.; Gayral, Stéphanie et al

in Nature Genetics (2009), 41

The primary cilium is an antenna-like structure that protrudes from the cell surface of quiescent/differentiated cells and participates in extracellular signal processing1–3. Here, we report that mice ... [more ▼]

The primary cilium is an antenna-like structure that protrudes from the cell surface of quiescent/differentiated cells and participates in extracellular signal processing1–3. Here, we report that mice deficient for the lipid 5-phosphatase Inpp5e develop a multiorgan disorder associated with structural defects of the primary cilium. In ciliated mouse embryonic fibroblasts, Inpp5e is concentrated in the axoneme of the primary cilium. Inpp5e inactivation did not impair ciliary assembly but altered the stability of pre-established cilia after serum addition. Blocking phosphoinositide 3-kinase (PI3K) activity or ciliary platelet-derived growth factor receptor a (PDGFRa) restored ciliary stability. In human INPP5E, we identified a mutation affecting INPP5E ciliary localization and cilium stability in a family with MORM syndrome, a condition related to Bardet-Biedl syndrome. Together, our results show that INPP5E plays an essential role in the primary cilium by controlling ciliary growth factor and PI3K signaling and stability, and highlight the consequences of INPP5E dysfunction. [less ▲]

Detailed reference viewed: 90 (19 ULg)
See detailInput of 12CO2 and 13CO2 soil concentration measurements to understand trends in soil carbon production and emission.
Longdoz, Bernard; Plain, Caroline; Parent, Florian et al

Poster (2011, April 05)

Detailed reference viewed: 24 (4 ULg)
Full Text
Peer Reviewed
See detailInput of supercritical carbon dioxide to polymer synthesis: an overview
Boyère, Cédric; Jérôme, Christine ULg; Debuigne, Antoine ULg

in European Polymer Journal (2014), 61

The ongoing search for environmentally friendlier alternative to the organic solvents used in chemical processes has led to the development of technologies based on supercritical carbon dioxide (scCO2 ... [more ▼]

The ongoing search for environmentally friendlier alternative to the organic solvents used in chemical processes has led to the development of technologies based on supercritical carbon dioxide (scCO2), which is non-flammable, non-toxic and relatively inert fluid. Polymer chemistry does not escape this trend and last achievements in the field of polymer synthesis in scCO2 are reviewed here. Without claiming to be exhaustive, we go through and discuss the benefits of the main polymerization processes in scCO2 including homogeneous, precipitation, dispersion, suspension and emulsion systems. A particular attention is drawn to water/carbon dioxide emulsion polymerization and to the suited surface active agents. This review also underlines that heterogeneous polymerization based on CO2 is more than a strategy for reducing the ecological footprint of the polymer production but it allows structuring the polymer materials into particles or highly interconnected macroporous networks. [less ▲]

Detailed reference viewed: 24 (6 ULg)
Full Text
Peer Reviewed
See detailInput-to-output stabilization of nonlinear systems via backstepping
Efimov, Denis ULg; Fradkov, Alexander

in International Journal of Robust and Nonlinear Control (2009), 19

An extension of a backstepping method for the stabilization of nonlinear systems with respect to a set is presented. Robust control laws providing the system with input-to-output stability are proposed ... [more ▼]

An extension of a backstepping method for the stabilization of nonlinear systems with respect to a set is presented. Robust control laws providing the system with input-to-output stability are proposed. Possibilities of non-strict Lyapunov functions’ application are discussed. The differences between a conventional backstepping method and an approach proposed in Kolesnikov (Synergetic Control Theory. Energoatomizdat: Moscow, 1994; 344) are analyzed. Performance of the obtained solutions is demonstrated by computer simulation for pendulum with an actuator example. [less ▲]

Detailed reference viewed: 30 (2 ULg)
Full Text
Peer Reviewed
See detailIns(1,3,4,5)P4 negatively regulates PtdIns(3,4,5)P3 signaling in neutrophils
Jia, Y.; Subramanian, K. K.; Erneux, C. et al

in Immunity (2007), 27

Many neutrophil functions are regulated by phosphatidylinositol-3,4,5-trisphosphate (PtdIns(3,4,5)P3) that mediates protein membrane translocation via binding to pleckstrin homolog (PH) domains within ... [more ▼]

Many neutrophil functions are regulated by phosphatidylinositol-3,4,5-trisphosphate (PtdIns(3,4,5)P3) that mediates protein membrane translocation via binding to pleckstrin homolog (PH) domains within target proteins. Here we show that inositol 1,3,4,5-tetrakisphosphate(Ins(1,3,4,5)P4), a cytosolic small molecule, bound the same PH domain of target proteins and competed for binding to PtdIns(3,4,5)P3. In neutrophils, chemoattractant stimulation triggered rapid elevation in Ins(1,3,4,5)P4 concentration. Depletion of Ins(1,3,4,5)P4 by deleting the gene encoding InsP3KB, which converts Ins(1,4,5)P3 to Ins(1,3,4,5)P4, enhanced membrane translocation of the PtdIns(3,4,5)P3-specific PH domain. This led to enhanced sensitivity to chemoattractant stimulation, elevated superoxide production, and enhanced neutrophil recruitment to inflamed peritoneal cavity. On the contrary, augmentation of intracellular Ins(1,3,4,5)P4 concentrationblockedPHdomainmediated membrane translocation of target proteins and dramatically decreased the sensitivity of neutrophils to chemoattractant stimulation. These findings establish a role for Ins(1,3,4,5)P4 in cellular signal transduction pathways and provide another mechanism for modulating PtdIns(3,4,5)P3 signaling in neutrophils. [less ▲]

Detailed reference viewed: 38 (7 ULg)