Browsing
     by title


0-9 A B C D E F G H I J K L M N O P Q R S T U V W X Y Z

or enter first few letters:   
OK
Full Text
Peer Reviewed
See detailGreenland ice sheet melt: intercomparison between SSM/I and a regional climate model
Fettweis, Xavier ULg

Conference (2004, April 27)

The daily melt extent on the Greenland ice sheet can easily be retrieved from satellite observations and therefore is a very useful index to study the surface mass balance (SMB) evolution of the last ... [more ▼]

The daily melt extent on the Greenland ice sheet can easily be retrieved from satellite observations and therefore is a very useful index to study the surface mass balance (SMB) evolution of the last years. It is also particularly helpful for the validation of a model because there is little in-situ observations on the Greenland ice sheet. The remote sensing melt-detection algorithms use the changes in microwave brightness temperatures during snowmelt. The most used one on Greenland is the cross-polarized gradient ratio (XPGR) method from Abdalati and Steffen (1997)*. It was found from a comparison with simulations made by the regional climate model MAR (Modèle Atmosphérique Régional) that the rainfall on the ice sheet in summer perturbs the melt signal detected by XPGR via the 37-Ghz vertical channel. An improved XPGR algorithm was developed. We present here our motivation to modify the XPGR. An intercomparaison between the SSM/I derived observations and the MAR is performed. The aim is to validate our model, in order to study the SMB for future climate. The simulated extent and time evolution of the wet snow zone compares better with satellite derived data when the modified XPGR method is used. [less ▲]

Detailed reference viewed: 7 (4 ULg)
Full Text
Peer Reviewed
See detailGreenland ice sheet projections from IPCC AR4 global models
Franco, Bruno ULg; Fettweis, Xavier ULg; Erpicum, Michel ULg et al

Poster (2009, April)

The atmosphere-ocean general circulation models (AOGCMs) used for the IPCC 4th Assessment Report (IPCC AR4) are evaluated for the Greenland ice sheet (GrIS) current climate modelling. The most efficient ... [more ▼]

The atmosphere-ocean general circulation models (AOGCMs) used for the IPCC 4th Assessment Report (IPCC AR4) are evaluated for the Greenland ice sheet (GrIS) current climate modelling. The most efficient AOGCMs are chosen by comparison between the 1970-1999 outputs of the Climate of the twentieth Century experiment (20C3M) and reanalyses (ECMWF, NCEP/NCAR). This comparison reveals that surface parameters such as temperature and precipitation are highly correlated to the atmospheric circulation (500 hPa geopotential height) and its interannual variability (North Atlantic oscillation). The outputs of the three most efficient AOGCMs are then used to assess the changes planned by three IPCC greenhouse gas emissions scenarios (SRES) for the 2070-2099 period. Future atmospheric circulation changes should dampen the west-to-east circulation (zonal flow) and should enhance the Meridional Overturning Circulation (MOC). As a consequence, this provides more heat and moisture to the GrIS, increasing temperature on the whole ice sheet and precipitation on the north-eastern region. It is also shown that the GrIS surface mass balance (SMB) anomalies from the SRES A1B scenario are about -300 km³/yr with respect to the 1970-1999 period, leading to 5 cm of global sea-level rise (SLR) for the end of the 21st century. This work helps to choose the boundaries conditions for AOGCMs downscaled future projections. [less ▲]

Detailed reference viewed: 36 (11 ULg)
Full Text
Peer Reviewed
See detailGreenland ice sheet surface mass balance projections from IPCC AR4 global models
Franco, Bruno ULg; Fettweis, Xavier ULg; Erpicum, Michel ULg

Poster (2009, January 28)

Results from atmosphere-ocean general circulation models (AOGCM's) for the IPCC 4th Assessment Report are used to investigate surface mass balance (SMB) future projections of the Greenland ice sheet (GrIS ... [more ▼]

Results from atmosphere-ocean general circulation models (AOGCM's) for the IPCC 4th Assessment Report are used to investigate surface mass balance (SMB) future projections of the Greenland ice sheet (GrIS). The most efficient models for the GrIS climate modeling are chosen by comparison between the 1970-1999 outputs (averages and trends) from the Climate of the twentieth Century Experiment (20C3M) and reanalyses (ECMWF, NCEP) as well as observations (ice core measurements). The outputs from these most efficient models are after used to assess changes planned by the IPCC greenhouse gas emissions scenarios (SRES) for the 2070-2099 period. The GrIS SMB projections are estimated from changes in precipitation and temperatures from these AOGCM's outputs. However, large uncertainties remain in these SMB projections based on simplified physics and huge model outputs. High resolution simulations made with regional models (which simulate explicitly the SMB by taking into account the surface feedbacks) forced at their boundaries by a GrIS well-adapted AOGCM could bring more precise brief replies. [less ▲]

Detailed reference viewed: 20 (3 ULg)
Full Text
Peer Reviewed
See detailGreenland ice sheet surface mass balance: evaluating simulations and making projections with regional climate models
Rae, J.; Aðalgeirsdóttir, G.; Edwards, T. et al

in Cryosphere (The) (2012), 6

Four high-resolution regional climate models (RCMs) have been set up for the area of Greenland, with the aim of providing future projections of Greenland ice sheet surface mass balance (SMB), and its ... [more ▼]

Four high-resolution regional climate models (RCMs) have been set up for the area of Greenland, with the aim of providing future projections of Greenland ice sheet surface mass balance (SMB), and its contribution to sea level rise, with greater accuracy than is possible from coarser-resolution general circulation models (GCMs). This is the first time an intercomparison has been carried out of RCM results for Greenland climate and SMB. Output from RCM simulations for the recent past with the four RCMs is evaluated against available observations. The evaluation highlights the importance of using a detailed snow physics scheme, especially regarding the representations of albedo and meltwater refreezing. Simulations with three of the RCMs for the 21st century using SRES scenario A1B from two GCMs produce trends of between −5.5 and −1.1 Gt yr−2 in SMB (equivalent to +0.015 and +0.003 mm sea level equivalent yr−2), with trends of smaller magnitude for scenario E1, in which emissions are mitigated. Results from one of the RCMs whose present-day simulation is most realistic indicate that an annual mean near-surface air temperature increase over Greenland of ~ 2°C would be required for the mass loss to increase such that it exceeds accumulation, thereby causing the SMB to become negative, which has been suggested as a threshold beyond which the ice sheet would eventually be eliminated. [less ▲]

Detailed reference viewed: 79 (10 ULg)
Full Text
Peer Reviewed
See detailGreenland ice-sheet contribution to sea-level rise buffered by meltwater storage in firn
Harper, J.; Humphrey, N.; Pfeffer, W. et al

in Nature (2012), 491

Surface melt on the Greenland ice sheet has shown increasing trends in areal extent and duration since the beginning of the satellite era. Records for melt were broken in 2005, 2007, 2010 and 2012. Much ... [more ▼]

Surface melt on the Greenland ice sheet has shown increasing trends in areal extent and duration since the beginning of the satellite era. Records for melt were broken in 2005, 2007, 2010 and 2012. Much of the increased surface melt is occurring in the percolation zone, a region of the accumulation area that is perennially covered by snow and firn (partly compacted snow). The fate of melt water in the percolation zone is poorly constrained: some may travel away from its point of origin and eventually influence the ice sheet’s flow dynamics and mass balance and the global sea level, whereas some may simply infiltrate into cold snow or firn and refreeze with none of these effects. Here we quantify the existing water storage capacity of the percolation zone of the Greenland ice sheet and show the potential for hundreds of gigatonnes of meltwater storage. We collected in situ observations of firn structure and meltwater retention along a roughly 85-kilometre-long transect of the melting accumulation area. Our data show that repeated infiltration events in which melt water penetrates deeply (more than 10 metres) eventually fill all pore space with water. As future surface melt intensifies under Arctic warming, a fraction of melt water that would otherwise contribute to sea-level rise will fill existing pore space of the percolation zone. We estimate the lower and upper bounds of this storage sink to be 322 ± 44 gigatonnes and 1.289 gigatonnes, respectively. Furthermore, we find that decades are required to fill this pore space under a range of plausible future climate conditions. Hence, routing of surface melt water into filling the pore space of the firn column will delay expansion of the area contributing to sea-level rise, although once the pore space is filled it cannot quickly be regenerated. [less ▲]

Detailed reference viewed: 23 (5 ULg)
Full Text
Peer Reviewed
See detailGreenland surface mass balance simulated by a regional climate model and comparison with satellite derived data in 1990-1991
Fettweis, Xavier ULg; Gallée, Hubert; Lefebre, Filip et al

in Climate Dynamics (2005), 24

The 1990 and 1991 ablation seasons over Greenland are simulated with a coupled atmosphere-snow regional climate model with a 25-km horizontal resolution. The simulated snow water content allows a direct ... [more ▼]

The 1990 and 1991 ablation seasons over Greenland are simulated with a coupled atmosphere-snow regional climate model with a 25-km horizontal resolution. The simulated snow water content allows a direct comparison with the satellite-derived melt signal. The model is forced with 6-hourly ERA-40 reanalysis at its boundaries. An evaluation of the simulated precipitation and a comparison of the modelled melt zone and the surface albedo with remote sensing observations are presented. Both the distribution and quantity of the simulated precipitation agree with observations from coastal weather stations, estimates from other models and the ERA-40 reanalysis. There are overestimations along the steep eastern coast, which are most likely due to the “topographic barrier effect”. The simulated extent and time evolution of the wet snow zone compare generally well with satellite-derived data, except during rainfall events on the ice sheet and because of a bias in the passive microwave retrieved melt signal. Although satellite-based surface albedo retrieval is only valid in the case of clear sky, the interpolation and the correction of these data enable us to validate the simulated albedo on the scale of the whole Greenland. These two comparisons highlight a large sensitivity of the remote sensing observations to weather conditions. Our high-resolution climate model was used to improve the retrieval algorithms by taking more fully into account the atmosphere variability. Finally, the good agreement of the simulated melting surface with the improved satellite signal allows a detailed estimation of the melting volume from the simulation. [less ▲]

Detailed reference viewed: 45 (10 ULg)
See detailGreenworks and economics
Halleux, Jean-Marie ULg

Conference (2010, October 13)

Detailed reference viewed: 2 (0 ULg)
Full Text
Peer Reviewed
See detailGREES recommendations for the Registration of new drugs in the prevention and treatment of osteoporosis
Reginster, Jean-Yves ULg; Compston, J

in Calcified Tissue International (1997), 60

Detailed reference viewed: 11 (2 ULg)
Peer Reviewed
See detailGreffe combinée rein-pancréas dans la néphropathie diabétique terminale. Rapport de la première transplantation à l'ULg.Revue
Meurisse, Michel ULg; Beaujean, Marianne; Honoré, Pierre ULg et al

in Revue Médicale de Liège (1986), XLI(21), 855-863

Detailed reference viewed: 32 (1 ULg)
Peer Reviewed
See detailLa greffe de cellules souches hematopoietiques (greffe de moelle osseuse"): indications, modalites et risques."
Beguin, Yves ULg

in Revue Médicale de Liège (1996), 51(4), 270-5

Detailed reference viewed: 46 (8 ULg)
Peer Reviewed
See detailLa greffe de cellules souches hematopoietiques dans la drepanocytose.
Cornu, G.; Vermylen, C.; Ferster, Aline et al

in Archives de Pédiatrie (1999), 6 Suppl 2

Detailed reference viewed: 43 (3 ULg)
Peer Reviewed
See detailGreffe de moelle: résultats préliminaires au CHU.
Bury, J.; Andrien, F.; Baudrihaye, M. et al

in Revue Médicale de Liège (1987), 42(10), 510-5

Detailed reference viewed: 41 (18 ULg)
See detailGreffes de moelle dans les hémoglobinopathies
Beguin, Yves ULg

in Mini Acta (1994), 26

Detailed reference viewed: 39 (25 ULg)
Peer Reviewed
See detailGreffes de moelle osseuse: bilan au CHU de Liege.
Beguin, Yves ULg; Fassotte, Marie-France ULg; Hay, F. et al

in Revue Médicale de Liège (1990), 45(6), 268-79

Detailed reference viewed: 65 (8 ULg)
See detailLes Greffes du corps animé: Winsor McCay, de la bande dessinée au film d’animation
Tomasovic, Dick ULg

in Quaresima, Leonardo; Vichi, Laura (Eds.) La decima Musa / The Tenth Muse (2001)

Detailed reference viewed: 17 (1 ULg)
See detailLes greffes en Neurochirurgie
Martin, Didier ULg

Conference (1990, January 22)

Detailed reference viewed: 4 (2 ULg)
Full Text
See detailGrégoire Polet. La complexité du monde
Robert, Laurent ULg

Article for general public (2010)

L'article présente l'oeuvre du romancier belge Grégoire Polet, dans une perspective de découverte d'un auteur encore en devenir.

Detailed reference viewed: 49 (11 ULg)
Full Text
See detailGregory Bateson
Servais, Véronique ULg

in Verschueren, Jef; Ostman, Jan-Ola; Blommaert, Jan (Eds.) et al Handbook of Pragmatics (1998)

The paper is a short synthesis of Gregory Bateson's contribution to the pragmatics.

Detailed reference viewed: 110 (7 ULg)