Browsing
     by title


0-9 A B C D E F G H I J K L M N O P Q R S T U V W X Y Z

or enter first few letters:   
OK
Full Text
Peer Reviewed
See detailThe Crystal Structure Of A Penicilloyl-Serine Transferase Of Intermediate Penicillin Sensitivity - The Dd-Transpeptidase Of Streptomyces K15
Fonze, E.; Vermeire, M.; Nguyen-Disteche, M. et al

in Journal of Biological Chemistry (1999), 274(31), 21853-60

The serine DD-transpeptidase/penicillin-binding protein of Streptomyces K15 catalyzes peptide bond formation in a way that mimics the penicillin-sensitive peptide cross-linking reaction involved in ... [more ▼]

The serine DD-transpeptidase/penicillin-binding protein of Streptomyces K15 catalyzes peptide bond formation in a way that mimics the penicillin-sensitive peptide cross-linking reaction involved in bacterial cell wall peptidoglycan assembly. The Streptomyces K15 enzyme is peculiar in that it can be considered as an intermediate between classical penicillin-binding proteins, for which benzylpenicillin is a very efficient inactivator, and the resistant penicillin-binding proteins that have a low penicillin affinity. With its moderate penicillin sensitivity, the Streptomyces K15 DD-transpeptidase would be helpful in the understanding of the structure-activity relationship of this penicillin-recognizing protein superfamily. The structure of the Streptomyces K15 enzyme has been determined by x-ray crystallography at 2.0-A resolution and refined to an R-factor of 18.6%. The fold adopted by this 262-amino acid polypeptide generates a two-domain structure that is close to those of class A beta-lactamases. However, the Streptomyces K15 enzyme has two particular structural features. It lacks the amino-terminal alpha-helix found in the other penicilloyl-serine transferases, and it exhibits, at its surface, an additional four-stranded beta-sheet. These two characteristics might serve to anchor the enzyme in the plasma membrane. The overall topology of the catalytic pocket of the Streptomyces K15 enzyme is also comparable to that of the class A beta-lactamases, except that the Omega-loop, which bears the essential catalytic Glu(166) residue in the class A beta-lactamases, is entirely modified. This loop adopts a conformation similar to those found in the Streptomyces R61 DD-carboxypeptidase and class C beta-lactamases, with no equivalent acidic residue. [less ▲]

Detailed reference viewed: 6 (1 ULg)
Full Text
Peer Reviewed
See detailThe crystal structure of bertossaite, CaLi2[Al4(PO4)4(OH,F)4]
Hatert, Frédéric ULg; Lefèvre, Pierre; Fransolet, André-Mathieu ULg

in Canadian Mineralogist (2011), 49

Detailed reference viewed: 16 (5 ULg)
Full Text
Peer Reviewed
See detailCrystal structure of BRL 42715, C6-(N1-methyl-1,2,3-triazolylmethylene)penem, in complex with Enterobacter cloacae 908R beta-lactamase: evidence for a stereoselective mechanism from docking studies.
Michaux, Catherine; Charlier, Paulette ULg; Frère, Jean-Marie ULg et al

in Journal of the American Chemical Society (2005), 127(10), 3262-3

BRL 42715, C6-(N1-methyl-1,2,3-triazolylmethylene)penem, is an active-site-directed inactivator of bacterial beta-lactamases. The crystal structure of Enterobacter cloacae 908R class C beta-lactamase in ... [more ▼]

BRL 42715, C6-(N1-methyl-1,2,3-triazolylmethylene)penem, is an active-site-directed inactivator of bacterial beta-lactamases. The crystal structure of Enterobacter cloacae 908R class C beta-lactamase in complex with BRL 42715, docking, and energy minimization studies explain stereoselectivity of the binding of C6-(heterocyclic methylene)penems against class C beta-lactamase. [less ▲]

Detailed reference viewed: 13 (0 ULg)
Peer Reviewed
See detailCrystal structure of cholera toxin B-pentamer bound to receptor GM1 pentasaccharide
Merritt, E. A.; Sarfaty, S.; van den Akker, F. et al

in Protein Science : A Publication of the Protein Society (1994), 3(2), 166-75

Cholera toxin (CT) is an AB5 hexameric protein responsible for the symptoms produced by Vibrio cholerae infection. In the first step of cell intoxication, the B-pentamer of the toxin binds specifically to ... [more ▼]

Cholera toxin (CT) is an AB5 hexameric protein responsible for the symptoms produced by Vibrio cholerae infection. In the first step of cell intoxication, the B-pentamer of the toxin binds specifically to the branched pentasaccharide moiety of ganglioside GM1 on the surface of target human intestinal epithelial cells. We present here the crystal structure of the cholera toxin B-pentamer complexed with the GM1 pentasaccharide. Each receptor binding site on the toxin is found to lie primarily within a single B-subunit, with a single solvent-mediated hydrogen bond from residue Gly 33 of an adjacent subunit. The large majority of interactions between the receptor and the toxin involve the 2 terminal sugars of GM1, galactose and sialic acid, with a smaller contribution from the N-acetyl galactosamine residue. The binding of GM1 to cholera toxin thus resembles a 2-fingered grip: the Gal(beta 1-3)GalNAc moiety representing the "forefinger" and the sialic acid representing the "thumb." The residues forming the binding site are conserved between cholera toxin and the homologous heat-labile enterotoxin from Escherichia coli, with the sole exception of His 13. Some reported differences in the binding affinity of the 2 toxins for gangliosides other than GM1 may be rationalized by sequence differences at this residue. The CTB5:GM1 pentasaccharide complex described here provides a detailed view of a protein:ganglioside specific binding interaction, and as such is of interest not only for understanding cholera pathogenesis and for the design of drugs and development of vaccines but also for modeling other protein:ganglioside interactions such as those involved in GM1-mediated signal transduction. [less ▲]

Detailed reference viewed: 24 (1 ULg)
Full Text
Peer Reviewed
See detailCrystal structure of Enterobacter cloacae 908R class C beta-lactamase bound to iodo-acetamido-phenyl boronic acid, a transition-state analogue
Wouters, J.; Fonze, E.; Vermeire, M. et al

in Cellular and Molecular Life Sciences (2003), 60(8), 1764-1773

The structures of the, class C beta-lactamase from Enterobacter cloacae 908R alone and in complex with a baronic acid transition-state analogue were determined by X-ray crystallography at 2.1 and 2.3 ... [more ▼]

The structures of the, class C beta-lactamase from Enterobacter cloacae 908R alone and in complex with a baronic acid transition-state analogue were determined by X-ray crystallography at 2.1 and 2.3 Angstrom, respectively. The structure of the enzyme resembles those of other class C beta-lactamases. The structure of the. complex with the transition-state analogue, iodo-acetamido-phenyl boronic acid, shows that the inhibitor is covalently, bound to the active-site serine (Ser64). Binding of the inhibitor within the active site is compared with previously determined structures of complexes with other class C enzymes. The structure of the boronic acid adduct indicates ways to improve the affinity of this class of inhibitors. This structure of 908R class C beta-lactamase in complex with a transitionstate analogue provides further insights into the mechanism of action of these hydrolases. [less ▲]

Detailed reference viewed: 10 (0 ULg)
Full Text
Peer Reviewed
See detailCrystal Structure of Human Peroxiredoxin 5, a Novel Type of Mammalian Peroxiredoxin at 1.5 Ǻ Resolution
Declercq, Jean-Paul; Evrard, Christine ULg; Clippe, André et al

in Journal of Molecular Biology (2001), 311

The peroxiredoxins define an emerging family of peroxidases able to reduce hydrogen peroxide and alkyl hydroperoxides with the use of reducing equivalents derived from thiol-containing donor molecules ... [more ▼]

The peroxiredoxins define an emerging family of peroxidases able to reduce hydrogen peroxide and alkyl hydroperoxides with the use of reducing equivalents derived from thiol-containing donor molecules such as thioredoxin, glutathione, trypanothione and AhpF. Peroxiredoxins have been identified in prokaryotes as well as in eukaryotes. Peroxiredoxin 5 (PRDX5) is a novel type of mammalian thioredoxin peroxidase widely expressed in tissues and located cellularly to mitochondria, peroxisomes and cytosol. Functionally, PRDX5 has been implicated in antioxidant protective mechanisms as well as in signal transduction in cells. We report here the 1.5 Ǻ resolution crystal structure of human PRDX5 in its reduced form. The crystal structure reveals that PRDX5 presents a thioredoxin-like domain. Interestingly, the crystal structure shows also that PRDX5 does not form a dimer like other mammalian members of the peroxiredoxin family. In the reduced form of PRDX5, Cys47 and Cys151 are distant of 13.8 Ǻ although these two cysteine residues are thought to be involved in peroxide reductase activity by forming an intramolecular disul®de intermediate in the oxidized enzyme. These data suggest that the enzyme would necessitate a conformational change to form a disulfide bond between catalytic Cys47 and Cys151 upon oxidation according to proposed peroxide reduction mechanisms. Moreover, the presence of a benzoate ion, a hydroxyl radical scavenger, was noted close to the active-site pocket. The possible role of benzoate in the antioxidant activity of PRDX5 is discussed. [less ▲]

Detailed reference viewed: 20 (0 ULg)
Full Text
Peer Reviewed
See detailCrystal structure of penicillin-binding protein 3 (PBP3) from Escherichia coli
Sauvage, Eric; Derouaux, Adeline ULg; Fraipont, Claudine ULg et al

in PLoS ONE (2014)

In Escherichia coli, penicillin-binding protein 3 (PBP3), also known as FtsI, is a central component of the divisome, catalyzing cross-linking of the cell wall peptidoglycan during cell division. PBP3 is ... [more ▼]

In Escherichia coli, penicillin-binding protein 3 (PBP3), also known as FtsI, is a central component of the divisome, catalyzing cross-linking of the cell wall peptidoglycan during cell division. PBP3 is mainly periplasmic, with a 23 residues cytoplasmic tail and a single transmembrane helix. We have solved the crystal structure of a soluble form of PBP3 (PBP357-577) at 2.5 Å revealing the two modules of high molecular weight class B PBPs, a carboxy terminal module exhibiting transpeptidase activity and an amino terminal module with unknown function. To gain additional insight, the PBP3 Val88-Ser165 subdomain (PBP388-165), for which the electron density is poorly defined in the PBP3 crystal, was produced and its structure solved by SAD phasing at 2.1 Å. The structure shows a three dimensional domain swapping with a β-strand of one molecule inserted between two strands of the paired molecule, suggesting a possible role in PBP357-577 dimerization. [less ▲]

Detailed reference viewed: 11 (1 ULg)
Peer Reviewed
See detailCrystal structure of recombinant human triosephosphate isomerase at 2.8 A resolution. Triosephosphate isomerase-related human genetic disorders and comparison with the trypanosomal enzyme
Mande, S. C.; Mainfroid, V.; Kalk, K. H. et al

in Protein Science : A Publication of the Protein Society (1994), 3(5), 810-21

The crystal structure of recombinant human triosephosphate isomerase (hTIM) has been determined complexed with the transition-state analogue 2-phosphoglycolate at a resolution of 2.8 A. After refinement ... [more ▼]

The crystal structure of recombinant human triosephosphate isomerase (hTIM) has been determined complexed with the transition-state analogue 2-phosphoglycolate at a resolution of 2.8 A. After refinement, the R-factor is 16.7% with good geometry. The asymmetric unit contains 1 complete dimer of 53,000 Da, with only 1 of the subunits binding the inhibitor. The so-called flexible loop, comprising residues 168-174, is in its "closed" conformation in the subunit that binds the inhibitor, and in the "open" conformation in the other subunit. The tips of the loop in these 2 conformations differ up to 7 A in position. The RMS difference between hTIM and the enzyme of Trypanosoma brucei, the causative agent of sleeping sickness, is 1.12 A for 487 C alpha positions with 53% sequence identity. Significant sequence differences between the human and parasite enzymes occur at about 13 A from the phosphate binding site. The chicken and human enzymes have an RMS difference of 0.69 A for 484 equivalent residues and about 90% sequence identity. Complementary mutations ensure a great similarity in the packing of side chains in the core of the beta-barrels of these 2 enzymes. Three point mutations in hTIM have been correlated with severe genetic disorders ranging from hemolytic disorder to neuromuscular impairment. Knowledge of the structure of the human enzyme provides insight into the probable effect of 2 of these mutations, Glu 104 to Asp and Phe 240 to Ile, on the enzyme. The third mutation reported to be responsible for a genetic disorder, Gly 122 to Arg, is however difficult to explain. This residue is far away from both catalytic centers in the dimer, as well as from the dimer interface, and seems unlikely to affect stability or activity. Inspection of the 3-dimensional structure of trypanosomal triosephosphate isomerase, which has a methionine at position 122, only increased the mystery of the effects of the Gly to Arg mutation in the human enzyme. [less ▲]

Detailed reference viewed: 9 (0 ULg)
Peer Reviewed
See detailCrystal structure of recombinant triosephosphate isomerase from Bacillus stearothermophilus. An analysis of potential thermostability factors in six isomerases with known three-dimensional structures points to the importance of hydrophobic interactions
Delboni, Luis F; Mande, Shekhar C; Rentier-Delrue, Françoise ULg et al

in Protein Science : A Publication of the Protein Society (1995), 4(12), 2594-604

The structure of the thermostable triosephosphate isomerase (TIM) from Bacillus stearothermophilus complexed with the competitive inhibitor 2-phosphoglycolate was determined by X-ray crystallography to a ... [more ▼]

The structure of the thermostable triosephosphate isomerase (TIM) from Bacillus stearothermophilus complexed with the competitive inhibitor 2-phosphoglycolate was determined by X-ray crystallography to a resolution of 2.8 A. The structure was solved by molecular replacement using XPLOR. Twofold averaging and solvent flattening was applied to improve the quality of the map. Active sites in both the subunits are occupied by the inhibitor and the flexible loop adopts the "closed" conformation in either subunit. The crystallographic R-factor is 17.6% with good geometry. The two subunits have an RMS deviation of 0.29 A for 248 C alpha atoms and have average temperature factors of 18.9 and 15.9 A2, respectively. In both subunits, the active site Lys 10 adopts an unusual phi, psi combination. A comparison between the six known thermophilic and mesophilic TIM structures was conducted in order to understand the higher stability of B. stearothermophilus TIM. Although the ratio Arg/(Arg+Lys) is higher in B. stearothermophilus TIM, the structure comparisons do not directly correlate this higher ratio to the better stability of the B. stearothermophilus enzyme. A higher number of prolines contributes to the higher stability of B. stearothermophilus TIM. Analysis of the known TIM sequences points out that the replacement of a structurally crucial asparagine by a histidine at the interface of monomers, thus avoiding the risk of deamidation and thereby introducing a negative charge at the interface, may be one of the factors for adaptability at higher temperatures in the TIM family. Analysis of buried cavities and the areas lining these cavities also contributes to the greater thermal stability of the B. stearothermophilus enzyme. However, the most outstanding result of the structure comparisons appears to point to the hydrophobic stabilization of dimer formation by burying the largest amount of hydrophobic surface area in B. stearothermophilus TIM compared to all five other known TIM structures. [less ▲]

Detailed reference viewed: 18 (0 ULg)
Full Text
Peer Reviewed
See detailThe crystal structure of sursassite from the Lienne valley, Stavelot Massif, Belgium
Hatert, Frédéric ULg; Fransolet, André-Mathieu ULg; Wouters, Johan et al

in European Journal of Mineralogy (2008), 20

Detailed reference viewed: 19 (1 ULg)
Full Text
Peer Reviewed
See detailCrystal structure of the actin-binding domain of alpha-actinin 1: evaluating two competing actin-binding models.
Borrego-Diaz, Emma; Kerff, Frédéric ULg; Lee, Sung Haeng et al

in Journal of Structural Biology (2006), 155(2), 230-8

Alpha-actinin belongs to the spectrin family of actin crosslinking and bundling proteins that function as key regulators of cell motility, morphology and adhesion. The actin-binding domain (ABD) of these ... [more ▼]

Alpha-actinin belongs to the spectrin family of actin crosslinking and bundling proteins that function as key regulators of cell motility, morphology and adhesion. The actin-binding domain (ABD) of these proteins consists of two consecutive calponin homology (CH) domains. Electron microscopy studies on ABDs appear to support two competing actin-binding models, extended and compact, whereas the crystal structures typically display a compact conformation. We have determined the 1.7A resolution structure of the ABD of alpha-actinin 1, a ubiquitously expressed isoform. The structure displays the classical compact conformation. We evaluated the two binding models by surface conservation analysis. The results show a conserved surface that spans both domains and corresponds to two previously identified actin-binding sites (ABS2 and ABS3). A third, and probably less important site, ABS1, is mostly buried in the compact conformation. However, a thorough examination of existing structures suggests a weak and semi-polar binding interface between the two CHs, leaving open the possibility of domain reorientation or opening. Our results are consistent with a two-step binding mechanism in which the ABD interacts first in the compact form observed in the structures, and then transitions toward a higher affinity state, possibly through minor rearrangement of the domains. [less ▲]

Detailed reference viewed: 26 (1 ULg)
Full Text
Peer Reviewed
See detailCrystal structure of the Actinomadura R39 DD-peptidase reveals new domains in penicillin-binding proteins.
Sauvage, Eric ULg; Herman, Raphaël ULg; Petrella, Stephanie et al

in Journal of Biological Chemistry (2005), 280(35), 31249-56

Actinomadura sp. R39 produces an exocellular DD-peptidase/penicillin-binding protein (PBP) whose primary structure is similar to that of Escherichia coli PBP4. It is characterized by a high beta-lactam ... [more ▼]

Actinomadura sp. R39 produces an exocellular DD-peptidase/penicillin-binding protein (PBP) whose primary structure is similar to that of Escherichia coli PBP4. It is characterized by a high beta-lactam-binding activity (second order rate constant for the acylation of the active site serine by benzylpenicillin: k2/K = 300 mm(-1) s(-1)). The crystal structure of the DD-peptidase from Actinomadura R39 was solved at a resolution of 1.8 angstroms by single anomalous dispersion at the cobalt resonance wavelength. The structure is composed of three domains: a penicillin-binding domain similar to the penicillin-binding domain of E. coli PBP5 and two domains of unknown function. In most multimodular PBPs, additional domains are generally located at the C or N termini of the penicillin-binding domain. In R39, the other two domains are inserted in the penicillin-binding domain, between the SXXK and SXN motifs, in a manner similar to "Matryoshka dolls." One of these domains is composed of a five-stranded beta-sheet with two helices on one side, and the other domain is a double three-stranded beta-sheet inserted in the previous domain. Additionally, the 2.4-angstroms structure of the acyl-enzyme complex of R39 with nitrocefin reveals the absence of active site conformational change upon binding the beta-lactams. [less ▲]

Detailed reference viewed: 58 (15 ULg)
Full Text
Peer Reviewed
See detailCrystal structure of the Bacillus subtilis penicillin-binding protein 4a, and its complex with a peptidoglycan mimetic peptide
Sauvage, Eric ULg; Duez, Colette ULg; Herman, Raphaël ULg et al

in Journal of Molecular Biology (2007), 371(2), 528-539

The genome of Bacillus subtilis encodes 16 penicillin-binding proteins (PBPs) involved in the synthesis and/or remodelling of the peptidoglycan during the complex life cycle of this sporulating Gram ... [more ▼]

The genome of Bacillus subtilis encodes 16 penicillin-binding proteins (PBPs) involved in the synthesis and/or remodelling of the peptidoglycan during the complex life cycle of this sporulating Gram-positive rod-shaped bacterium. PBP4a (encoded by the dacC gene) is a low-molecular mass PBP clearly exhibiting in vitro DD-carboxypeptidase activity. We have solved the crystal structure of this protein alone and in complex with a peptide (D-alpha'-aminopymelyl-epsilon-D-alanyl-D-alanine) that mimics the C-terminal end of the Bacillus peptidoglycan stem peptide. PBP4a is composed of three domains: the penicillin-binding domain with a fold similar to the class A 13-lactamase structure and two domains inserted between the conserved motifs 1 and 2 characteristic of the penicillin-recognizing enzymes. The soaking of PBP4a in a solution Of D-alpha-aminopymelyl-epsilon-D-alanyl-D-alanine resulted in an adduct between PBP4a and a D-alpha-aminopimelyl-epsilon-D-alanine dipeptide and an unbound D-alanine, i.e. the products of acylation of PBP4a by D-alpha-aminopymelyl-epsilon-D-alanyl-D-alanine with the release of a D-alanine. The adduct also reveals a binding pocket specific to the diaminopimelic acid, the third residue of the peptidoglycan stem pentapeptide of B. subtilis. This pocket is specific for this class of PBPs. (C) 2007 Elsevier Ltd. All rights reserved. [less ▲]

Detailed reference viewed: 60 (15 ULg)
Full Text
Peer Reviewed
See detailCrystal structure of the C47S mutant of human peroxiredoxin 5
Evrard, Christine ULg; Smeets, Aude; Knoops, Bernard et al

in Journal of Chemical Crystallography (2004), 34

In the crystal structure of the reduced form of the wild-type human peroxiredoxin 5, the presence of a benzoate ion in direct interaction with the peroxidatic cysteine (Cys 47) appeared as a rather ... [more ▼]

In the crystal structure of the reduced form of the wild-type human peroxiredoxin 5, the presence of a benzoate ion in direct interaction with the peroxidatic cysteine (Cys 47) appeared as a rather intriguing feature since it is known that the benzoate ion can play the role of a specific hydroxyl radical scavenger. The crystal structure of the C47S mutant of the same enzyme has been crystallized in the tetragonal system, space group P41212, with a = 65.65 Å, c = 122.04 Å. It confirms the presence of this benzoate ion in spite of the mutation into a serine of the Cys 47 residue to which the benzoate ion was directly linked in the wild-type structure. The benzoate ion seems to be stabilized by hydrophobic contacts on both sides of the aromatic ring. In this matter, the α5 helix, which is specific to peroxiredoxin 5 among mammalian peroxiredoxins, plays an important role. These hydrophobic contacts also allow to suggest why the benzoate ion disappears when the molecule is oxidized. [less ▲]

Detailed reference viewed: 10 (0 ULg)
Full Text
Peer Reviewed
See detailCrystal structure of the catalytic domain of MMP-16/MT3-MMP: Characterization of MT-MMP specific features
Lang, R.; Braun, M.; Sounni, Nor Eddine ULg et al

in Journal of Molecular Biology (2004), 336(1), 213-225

Membrane-type matrix metalloproteinases (MT-MMPs) have attracted strong attention, because four of them can activate a key player in the tumor scenario, proMMP-2/progelatinase A. In addition to this ... [more ▼]

Membrane-type matrix metalloproteinases (MT-MMPs) have attracted strong attention, because four of them can activate a key player in the tumor scenario, proMMP-2/progelatinase A. In addition to this indirect effect on the cellular environment, these MT-MMPs degrade extracellular matrix proteins, and their overproduction is associated with tumor growth. We have solved the structure of the catalytic domain (cd) of MT3-MMP/MMP-16 in complex with the hydroxamic acid inhibitor batimastat. CdMT3-MMP exhibits a classical MMP-fold with similarity to MT1-MMP. Nevertheless, it also shows unique properties such as a modified MT-specific loop and a closed S1' specificity pocket, which might help to design specific inhibitors. Some MT-MMP-specific features, derived from the crystal structures of MT-1-MMP determined previously and MT3-MMP, and revealed in recent mutagenesis experiments, explain the impaired interaction of the MT-MMPs with TIMP-1. Docking experiments with proMMP-2 show some exposed loops including the MT-loop of cdMT3-MMP involved in the interaction with the proMMP-2 prodomain in the activation encounter complex. This model might help to understand the experimentally proven importance of the MT-loop for the activation of proMMP-2. (C) 2003 Elsevier Ltd. All rights reserved. [less ▲]

Detailed reference viewed: 16 (1 ULg)
Full Text
Peer Reviewed
See detailThe crystal structure of the cell division amidase AmiC reveals the fold of the AMIN domain, a new peptidoglycan binding domain.
Rocaboy, Mathieu; Herman, Raphael; Sauvage, Eric ULg et al

in Molecular microbiology (2013)

Binary fission is the ultimate step of the prokaryotic cell cycle. In Gram-negative bacteria like Escherichia coli, this step implies the invagination of three biological layers (cytoplasmic membrane ... [more ▼]

Binary fission is the ultimate step of the prokaryotic cell cycle. In Gram-negative bacteria like Escherichia coli, this step implies the invagination of three biological layers (cytoplasmic membrane, peptidoglycan and outer membrane), biosynthesis of the new poles and eventually, daughter cells separation. The latter requires the coordinated action of the N-acetylmuramyl-L-alanine amidases AmiA/B/C and their LytM activators EnvC and NlpD to cleave the septal peptidoglycan. We present here the 2.5 A crystal structure of AmiC which includes the first report of an AMIN domain structure, a beta-sandwich of two symmetrical four-stranded beta-sheets exposing highly conserved motifs on the two outer faces. We show that this N-terminal domain, involved in the localization of AmiC at the division site, is a new peptidoglycan-binding domain. The C-terminal catalytic domain shows an auto-inhibitory alpha helix obstructing the active site. AmiC lacking this helix exhibits by itself an activity comparable to that of the wild type AmiC activated by NlpD. We also demonstrate the interaction between AmiC and NlpD by microscale thermophoresis and confirm the importance of the active site blocking alpha helix in the regulation of the amidase activity. [less ▲]

Detailed reference viewed: 6 (1 ULg)
Full Text
Peer Reviewed
See detailCrystal structure of the cold-active aminopeptidase from Colwellia psychrerythraea, a close structural homologue of the human bifunctional leukotriene A4 hydrolase
Bauvois, Cédric; Jacquamet, Lilian; Huston, Adrienne L. et al

in Journal of Biological Chemistry (2008), 283(34), 23315-25

The crystal structure of a cold-active aminopeptidase (ColAP) from Colwellia psychrerythraea strain 34H has been determined, extending the number of crystal structures of the M1 metallopeptidase family to ... [more ▼]

The crystal structure of a cold-active aminopeptidase (ColAP) from Colwellia psychrerythraea strain 34H has been determined, extending the number of crystal structures of the M1 metallopeptidase family to four among the 436 members currently identified. In agreement with their sequence similarity, the overall structure of ColAP displayed a high correspondence with leukotriene A4 hydrolase (LTA4H), a human bifunctional enzyme that converts leukotriene A4 (LTA4) in the potent chemoattractant leukotriene B4. Indeed, both enzymes are composed of three domains, an N-terminal saddle-like domain, a catalytic thermolysin-like domain, and a less conserved C-terminal alpha-helical flat spiral domain. Together, these domains form a deep cavity harboring the zinc binding site formed by residues included in the conserved HEXXHX(18)H motif. A detailed structural comparison of these enzymes revealed several plausible determinants of ColAP cold adaptation. The main differences involve specific amino acid substitutions, loop content and solvent exposure, complexity and distribution of ion pairs, and differential domain flexibilities. Such elements may act synergistically to allow conformational flexibility needed for an efficient catalysis in cold environments. Furthermore, the region of ColAP corresponding to the aminopeptidase active site of LTA4H is much more conserved than the suggested LTA4 substrate binding region. This observation supports the hypothesis that this region of the LTA4H active site has evolved in order to fit the lipidic substrate. [less ▲]

Detailed reference viewed: 14 (1 ULg)