Browsing
     by title


0-9 A B C D E F G H I J K L M N O P Q R S T U V W X Y Z

or enter first few letters:   
OK
Full Text
Peer Reviewed
See detailCrystal Growth, Transport, and the Structural and Magnetic Properties of Ln4FeGa12 with Ln = Y, Tb, Dy, Ho, and Er
Drake, B. L.; Grandjean, Fernande ULg; Okudzeto, E. K. et al

in Inorganic Chemistry (2010), 49

Ln4FeGa12, where Ln is Y, Tb, Dy, Ho, and Er, prepared by flux growth, crystallize with the cubic Y4PdGa12 structure with the space group and with a = 8.5650(4), 8.5610(4), 8.5350(3), 8.5080(3), and 8 ... [more ▼]

Ln4FeGa12, where Ln is Y, Tb, Dy, Ho, and Er, prepared by flux growth, crystallize with the cubic Y4PdGa12 structure with the space group and with a = 8.5650(4), 8.5610(4), 8.5350(3), 8.5080(3), and 8.4720(4) Å, respectively. The crystal structure consists of an iron-gallium octahedra and face sharing rare-earth cuboctahedra of the Au3Cu type. Y4FeGa12 exhibits weak itinerant ferromagnetism below 36 K. In contrast, Tb4FeGa12, Dy4FeGa12, Ho4FeGa12, and Er4FeGa12 order antiferromagnetically with maxima in the molar magnetic susceptibilities at 26, 18.5, 9, and 6 K. All the compounds exhibit metallic electric resistivity and their iron-57 Mössbauer spectra, obtained between 4.2 and 295 K, exhibit a single-line absorption with a 4.2 K isomer shift of ca. 0.50 mm/s, a shift that is characteristic of iron in an iron-gallium intermetallic compound. A small but significant broadening in the spectral absorption line width is observed for Y4FeGa12 below 40 K and results from the small hyperfine field arising from its spin-polarized itinerant electrons [less ▲]

Detailed reference viewed: 65 (0 ULg)
Full Text
Peer Reviewed
See detailA crystal of a typical EF-hand protein grown under microgravity diffracts X-rays beyond 0.9 Å resolution
Declercq, Jean-Paul; Evrard, Christine ULg; Carter, Daniel et al

in Journal of Crystal Growth (1999), 196

We report on our recent observation that crystals of a typical EF-hand protein (parvalbumin or Pa; Ca-loaded component from pike muscle with isoelectric point 4.10) grown under microgravity conditions ... [more ▼]

We report on our recent observation that crystals of a typical EF-hand protein (parvalbumin or Pa; Ca-loaded component from pike muscle with isoelectric point 4.10) grown under microgravity conditions diffract X-rays to a resolution better than 0.9 Å. The crystals were grown in the US space shuttle and characterized at 100 K, using an X-ray synchrotron beam. An effective atomic resolution has been achieved and substates in the conformation of the protein are observed. Large crystals up to 3 mm were also obtained. [less ▲]

Detailed reference viewed: 6 (0 ULg)
Full Text
Peer Reviewed
See detailCrystal Plasticity Modelling of Monotonic Shear Tests on Pure Titanium
Hammami, Walid ULg; Bouvier, S.; Duchene, Laurent ULg et al

in Oñate, E.; Owen, D. R. J. (Eds.) Computational plasticity X. Fundamentals and applications (2009, September)

This study consists in the modelling of shear tests performed on pure titanium using a polycrystalline model. Numerical and experimental results are presented.

Detailed reference viewed: 91 (29 ULg)
Full Text
Peer Reviewed
See detailCrystal plasticity prediction of Lankford coefficient using the MULTISITE model: influence of the critical resolved shear stresses
Hammami, Walid ULg; Delannay, Laurent; Duchene, Laurent ULg et al

in International Journal of Material Forming (2009, August), 2(Supplément 1), 65-68

The MULTISITE model [1] is based on polycrystalline plasticity and the underlying hypotheses of the model are (i) that the deformation of each grain is significantly influenced by the interaction with a ... [more ▼]

The MULTISITE model [1] is based on polycrystalline plasticity and the underlying hypotheses of the model are (i) that the deformation of each grain is significantly influenced by the interaction with a limited number of adjacent grains, and (ii) that local strains deviate from their macroscopic average according to specific “relaxation modes”. The LAMEL model [2] is reformulated into the more general elastic-viscoplastic MULTISITE model permitting various relaxation modes. This model has been validated for cubic materials but hexagonal close-packed (HCP) crystals usually demonstrate larger anisotropy than cubic crystals. The model was used to simulate uniaxial tensile tests performed on rolled sheets made of Ti-6Al-4V. The Lankford coefficients (r) calculated in various directions in the plane of the sheet were analysed. In this study, different grain interaction hypotheses were tested. Besides, it appeared that the value of the critical resolved shear stresses (CRSS) of the different slip system families of the HCP metal had significant effects on the results. Their influence as well as the influence of the strain rate sensitivity parameter was examined. [less ▲]

Detailed reference viewed: 189 (43 ULg)
Full Text
Peer Reviewed
See detailCrystal structure and activity of Bacillus subtilis YoaJ (EXLX1), a bacterial expansin that promotes root colonization.
Kerff, Frédéric ULg; Amoroso, Ana Maria ULg; Herman, Raphaël ULg et al

in Proceedings of the National Academy of Sciences of the United States of America (2008), 105(44), 16876-81

We solved the crystal structure of a secreted protein, EXLX1, encoded by the yoaJ gene of Bacillus subtilis. Its structure is remarkably similar to that of plant beta-expansins (group 1 grass pollen ... [more ▼]

We solved the crystal structure of a secreted protein, EXLX1, encoded by the yoaJ gene of Bacillus subtilis. Its structure is remarkably similar to that of plant beta-expansins (group 1 grass pollen allergens), consisting of 2 tightly packed domains (D1, D2) with a potential polysaccharide-binding surface spanning the 2 domains. Domain D1 has a double-psi beta-barrel fold with partial conservation of the catalytic site found in family 45 glycosyl hydrolases and in the MltA family of lytic transglycosylases. Domain D2 has an Ig-like fold similar to group 2/3 grass pollen allergens, with structural features similar to a type A carbohydrate-binding domain. EXLX1 bound to plant cell walls, cellulose, and peptidoglycan, but it lacked lytic activity against a variety of plant cell wall polysaccharides and peptidoglycan. EXLX1 promoted plant cell wall extension similar to, but 10 times weaker than, plant beta-expansins, which synergistically enhanced EXLX1 activity. Deletion of the gene encoding EXLX1 did not affect growth or peptidoglycan composition of B. subtilis in liquid medium, but slowed lysis upon osmotic shock and greatly reduced the ability of the bacterium to colonize maize roots. The presence of EXLX1 homologs in a small but diverse set of plant pathogens further supports a role in plant-bacterial interactions. Because plant expansins have proved difficult to express in active form in heterologous systems, the discovery of a bacterial homolog opens the door for detailed structural studies of expansin function. [less ▲]

Detailed reference viewed: 107 (10 ULg)
See detailCrystal Structure and Local Disorder in Modern and Ancient Prussian Blue Pigments
Samain, Louise ULg; Martinetto, Pauline; Bordet, Pierre et al

Poster (2012, June 06)

The necessity of understanding degradation and alteration processes in a painting's materials is well established for preservation and art history issues. The task is however complex because of the highly ... [more ▼]

The necessity of understanding degradation and alteration processes in a painting's materials is well established for preservation and art history issues. The task is however complex because of the highly heterogeneous character of a paint layer, which consists of a mixture of pigments and a binder on a support. In this context we focus on a particular pigment, Prussian blue. Prussian blue is a hydrated ferric ferrocyanide complex, first synthesized in 1704 in Berlin. It has been widely used by artists until the 1970's. However reports of discoloration had already appeared in eighteenth and nineteenth century books. To date, little attention has been devoted to the understanding of the degradation processes of Prussian blue in paint layers. The preparation methods of Prussian blue were rapidly recognized as a contributory factor in the fading of the pigment because they lead to the introduction of impurities in its structure. The crystal structure of Prussian blue is notoriously complex because of the presence of vacancies and local disorder. Unresolved questions about the crystal structure of the soluble variety of Prussian blue, i.e., Prussian blue containing alkali cations, are still found in the literature. We reproduced modern and ancient preparation methods of Prussian blue and analyzed the obtained pigments by high-energy powder diffraction at the beamline ID11, ESRF, Grenoble and at the beamline CRISTAL, Soleil, Paris. The crystal structure of soluble Prussian blue was reviewed by Rietveld refinement and appears to contain approximately a quart of iron(II) sites vacant, similarly to the well-known insoluble crystal structure. The refinement of the pair distribution function extracted from the total scattering signal revealed a local structure different from the average one. The local arrangements are best described by combining three different substructures with different numbers of vacancies and vary upon the type of synthesis. The PDF analysis also evidenced the formation of nanocrystalline ferrihydrite and alumina hydrate in Prussian blue pigments synthesized according to eighteenth-century recipes. The local disorder and the presence of an undesirable iron compound in Prussian blue can help to better understand the degradation mechanisms in paint layers containing this pigment. [less ▲]

Detailed reference viewed: 55 (2 ULg)
Full Text
Peer Reviewed
See detailCrystal structure of 7-chloro-3-isopropoxy-4H-1,2,4-benzothiadiazine 1,1-dioxide monohydrate, C10H13CIN2O4S H2O
Dupont, L.; Boverie, S.; Pirotte, Bernard ULg et al

in Zeitschrift für Kristallographie. New Crystal Structures (2005), NCS 220

Detailed reference viewed: 11 (4 ULg)
Full Text
Peer Reviewed
See detailCrystal structure of 7-chloro-3-isopropylamino-4H-1,2,4-benzothiadiazine 1,1-dioxide, C10H12CIN3O2S
Dupont, L.; Pirotte, Bernard ULg; De Tullio, Pascal ULg

in Zeitschrift für Kristallographie. New Crystal Structures (2005), NCS 220

Detailed reference viewed: 6 (2 ULg)
Full Text
Peer Reviewed
See detailCrystal structure of 7-chloro-3-isopropylsulfanyl-4H-1,2,4-benzothiadiazine 1,1-dioxide, C10H11CIN2O2S2
Dupont, L.; Boverie, S.; De Tullio, Pascal ULg et al

in Zeitschrift für Kristallographie. New Crystal Structures (2005), NCS 220

Detailed reference viewed: 4 (1 ULg)
Full Text
Peer Reviewed
See detailCrystal structure of a cold-adapted class C beta-lactamase.
Michaux, Catherine; Massant, Jan; Kerff, Frédéric ULg et al

in FEBS Journal (2008), 275(8), 1687-97

In this study, the crystal structure of a class C beta-lactamase from a psychrophilic organism, Pseudomonas fluorescens, has been refined to 2.2 A resolution. It is one of the few solved crystal ... [more ▼]

In this study, the crystal structure of a class C beta-lactamase from a psychrophilic organism, Pseudomonas fluorescens, has been refined to 2.2 A resolution. It is one of the few solved crystal structures of psychrophilic proteins. The structure was compared with those of homologous mesophilic enzymes and of another, modeled, psychrophilic protein. The elucidation of the 3D structure of this enzyme provides additional insights into the features involved in cold adaptation. Structure comparison of the psychrophilic and mesophilic beta-lactamases shows that electrostatics seems to play a major role in low-temperature adaptation, with a lower total number of ionic interactions for cold enzymes. The psychrophilic enzymes are also characterized by a decreased number of hydrogen bonds, a lower content of prolines, and a lower percentage of arginines in comparison with lysines. All these features make the structure more flexible so that the enzyme can behave as an efficient catalyst at low temperatures. [less ▲]

Detailed reference viewed: 23 (1 ULg)
Full Text
Peer Reviewed
See detailCrystal structure of a complex between the Actinomadura R39 DD-peptidase and a peptidoglycan-mimetic boronate inhibitor: interpretation of a transition state analogue in terms of catalytic mechanism.
Dzhekieva, Liudmila; Rocaboy, Mathieu ULg; Kerff, Frédéric ULg et al

in Biochemistry (2010), 49(30), 6411-9

The Actinomadura R39 DD-peptidase is a bacterial low molecular weight class C penicillin-binding protein. It has previously been shown to catalyze hydrolysis and aminolysis of small D-alanyl-D-alanine ... [more ▼]

The Actinomadura R39 DD-peptidase is a bacterial low molecular weight class C penicillin-binding protein. It has previously been shown to catalyze hydrolysis and aminolysis of small D-alanyl-D-alanine terminating peptides, especially those with a side chain that mimics the amino terminus of the stem peptide precursor to the bacterial cell wall. This paper describes the synthesis of (D-alpha-aminopimelylamino)-D-1-ethylboronic acid, designed to be a peptidoglycan-mimetic transition state analogue inhibitor of the R39 DD-peptidase. The boronate was found to be a potent inhibitor of the peptidase with a K(i) value of 32 +/- 6 nM. Since it binds some 30 times more strongly than the analogous peptide substrate, the boronate may well be a transition state analogue. A crystal structure of the inhibitory complex shows the boronate covalently bound to the nucleophilic active site Ser 49. The aminopimelyl side chain is bound into the site previously identified as specific for this moiety. One boronate oxygen is held in the oxyanion hole; the other, occupying the leaving group site of acylation or the nucleophile site of deacylation, appears to be hydrogen-bonded to the hydroxyl group of Ser 298. The Ser 49 oxygen appears to be hydrogen bonded to Lys 52. If it is assumed that this structure does resemble a high-energy tetrahedral intermediate in catalysis, it seems likely that Ser 298 participates as part of a proton transfer chain initiated by Lys 52 or Lys 410 as the primary proton donor/acceptor. The structure, therefore, supports a particular class of mechanism that employs this proton transfer device. [less ▲]

Detailed reference viewed: 29 (3 ULg)
Peer Reviewed
See detailCrystal structure of a D-aminopeptidase from Ochrobactrum anthropi, a new member of the 'penicillin-recognizing enzyme' family.
Bompard-Gilles, C.; Remaut, H.; Villeret, V. et al

in Structure (2000), 8(9), 971-80

BACKGROUND: beta-Lactam compounds are the most widely used antibiotics. They inactivate bacterial DD-transpeptidases, also called penicillin-binding proteins (PBPs), involved in cell-wall biosynthesis ... [more ▼]

BACKGROUND: beta-Lactam compounds are the most widely used antibiotics. They inactivate bacterial DD-transpeptidases, also called penicillin-binding proteins (PBPs), involved in cell-wall biosynthesis. The most common bacterial resistance mechanism against beta-lactam compounds is the synthesis of beta-lactamases that hydrolyse beta-lactam rings. These enzymes are believed to have evolved from cell-wall DD-peptidases. Understanding the biochemical and mechanistic features of the beta-lactam targets is crucial because of the increasing number of resistant bacteria. DAP is a D-aminopeptidase produced by Ochrobactrum anthropi. It is inhibited by various beta-lactam compounds and shares approximately 25% sequence identity with the R61 DD-carboxypeptidase and the class C beta-lactamases. RESULTS: The crystal structure of DAP has been determined to 1.9 A resolution using the multiple isomorphous replacement (MIR) method. The enzyme folds into three domains, A, B and C. Domain A, which contains conserved catalytic residues, has the classical fold of serine beta-lactamases, whereas domains B and C are both antiparallel eight-stranded beta barrels. A loop of domain C protrudes into the substrate-binding site of the enzyme. CONCLUSIONS: Comparison of the biochemical properties and the structure of DAP with PBPs and serine beta-lactamases shows that although the catalytic site of the enzyme is very similar to that of beta-lactamases, its substrate and inhibitor specificity rests on residues of domain C. DAP is a new member of the family of penicillin-recognizing proteins (PRPs) and, at the present time, its enzymatic specificity is clearly unique. [less ▲]

Detailed reference viewed: 11 (0 ULg)
Full Text
Peer Reviewed
See detailCrystal structure of a dimeric oxidized form of human peroxiredoxin 5
Evrard, Christine ULg; Capron, Arnaud; Marchand, Cécile et al

in Journal of Molecular Biology (2004), 337

Peroxiredoxin 5 is the last discovered mammalian member of an ubiquitous family of peroxidases widely distributed among prokaryotes and eukaryotes. Mammalian peroxiredoxin 5 has been recently classified ... [more ▼]

Peroxiredoxin 5 is the last discovered mammalian member of an ubiquitous family of peroxidases widely distributed among prokaryotes and eukaryotes. Mammalian peroxiredoxin 5 has been recently classified as an atypical 2-Cys peroxiredoxin due to the presence of a conserved peroxidatic N-terminal cysteine (Cys47) and an unconserved resolving C-terminal cysteine residue (Cys151) forming an intramolecular disulfide intermediate in the oxidized enzyme. We have recently reported the crystal structure of human peroxiredoxin 5 in its reduced form. Here, a new crystal form of human peroxiredoxin 5 is described at 2.0 Ǻ resolution. The asymmetric unit contains three polypeptide chains. Surprisingly, beside two reduced chains, the third one is oxidized although the enzyme was crystallized under initial reducing conditions in presence of 1 mM 1,4-dithio-DL-threitol. The oxidized polypeptide chain forms an homodimer with a symmetry related one through intermolecular disulfide bonds between Cys47 and Cys151. The formation of these disulfide bonds is accompanied by the partial unwinding of the N-terminal parts of the a2 helix, which in the reduced form, contains the peroxidatic Cys47 and the α6 helix, which is sequentially close to the resolving residue Cys151. In each monomer of the oxidized chain, the C-terminal part including the α6 helix is completely reorganized and is isolated from the rest of the protein on an extended arm. In the oxidized dimer, the arm belonging to the first monomer now appears at the surface of the second subunit and vice versa. [less ▲]

Detailed reference viewed: 13 (0 ULg)
Full Text
Peer Reviewed
See detailThe Crystal Structure Of A Penicilloyl-Serine Transferase Of Intermediate Penicillin Sensitivity - The Dd-Transpeptidase Of Streptomyces K15
Fonze, E.; Vermeire, M.; Nguyen-Disteche, M. et al

in Journal of Biological Chemistry (1999), 274(31), 21853-60

The serine DD-transpeptidase/penicillin-binding protein of Streptomyces K15 catalyzes peptide bond formation in a way that mimics the penicillin-sensitive peptide cross-linking reaction involved in ... [more ▼]

The serine DD-transpeptidase/penicillin-binding protein of Streptomyces K15 catalyzes peptide bond formation in a way that mimics the penicillin-sensitive peptide cross-linking reaction involved in bacterial cell wall peptidoglycan assembly. The Streptomyces K15 enzyme is peculiar in that it can be considered as an intermediate between classical penicillin-binding proteins, for which benzylpenicillin is a very efficient inactivator, and the resistant penicillin-binding proteins that have a low penicillin affinity. With its moderate penicillin sensitivity, the Streptomyces K15 DD-transpeptidase would be helpful in the understanding of the structure-activity relationship of this penicillin-recognizing protein superfamily. The structure of the Streptomyces K15 enzyme has been determined by x-ray crystallography at 2.0-A resolution and refined to an R-factor of 18.6%. The fold adopted by this 262-amino acid polypeptide generates a two-domain structure that is close to those of class A beta-lactamases. However, the Streptomyces K15 enzyme has two particular structural features. It lacks the amino-terminal alpha-helix found in the other penicilloyl-serine transferases, and it exhibits, at its surface, an additional four-stranded beta-sheet. These two characteristics might serve to anchor the enzyme in the plasma membrane. The overall topology of the catalytic pocket of the Streptomyces K15 enzyme is also comparable to that of the class A beta-lactamases, except that the Omega-loop, which bears the essential catalytic Glu(166) residue in the class A beta-lactamases, is entirely modified. This loop adopts a conformation similar to those found in the Streptomyces R61 DD-carboxypeptidase and class C beta-lactamases, with no equivalent acidic residue. [less ▲]

Detailed reference viewed: 6 (1 ULg)
Full Text
Peer Reviewed
See detailThe crystal structure of bertossaite, CaLi2[Al4(PO4)4(OH,F)4]
Hatert, Frédéric ULg; Lefèvre, Pierre; Fransolet, André-Mathieu ULg

in Canadian Mineralogist (2011), 49

Detailed reference viewed: 16 (5 ULg)