Browsing
     by title


0-9 A B C D E F G H I J K L M N O P Q R S T U V W X Y Z

or enter first few letters:   
OK
Full Text
Peer Reviewed
See detailCass. 28 mars 2012, n°P.11.2083.F
Delnoy, Michel ULg

in Aménagement - Environnement (2012), 5

Detailed reference viewed: 27 (1 ULg)
Full Text
Peer Reviewed
See detailCassandre's results from the Kwalon experiment
Lejeune, Christophe ULg

Conference (2010, April 23)

See PDF

Detailed reference viewed: 261 (9 ULg)
Full Text
Peer Reviewed
See detailCassandre, un outil pour construire, confronter et expliciter les interprétations
Lejeune, Christophe ULg

in Beauvais, Martine; Clénet, Jean (Eds.) Actes du 2ème colloque international francophone sur les méthodes qualitatives (2010)

Cassandre est un logiciel libre d'analyse de textes, adossé à la plateforme collaborative Hypertopic. Fruit de la convergence épistémologique entre l'analyse qualitative (en sciences humaines) et le Web ... [more ▼]

Cassandre est un logiciel libre d'analyse de textes, adossé à la plateforme collaborative Hypertopic. Fruit de la convergence épistémologique entre l'analyse qualitative (en sciences humaines) et le Web socio-sémantique (en informatique), cet outil accompagne la construction semi-automatique du (des) cadre(s) d'analyse du (des) chercheur(s). Une série de comptes-rendus d'utilisation (tantôt collectifs tantôt isolés, plutôt inductifs ou hypothético-déductifs) attestent des apports de l'outil : génération d'un journal de bord, économie cognitive et temporelle, flexibilité, aide au travail en équipe et multiplication des entrées dans le matériau. Ces usages témoignent également des inévitables limites afférentes à l'usage d'un logiciel dans une approche qualitative. En définitive, on plaide donc pour un recours raisonné à Cassandre, comme à tout autre logiciel. [less ▲]

Detailed reference viewed: 410 (63 ULg)
Full Text
See detailCassatie bevestigt: enkel handelingen kaderend binnen het maatschappelijk doel genereren aftrekbare kosten
Peeters, Bart ULg

in Fiscale dossiers Vandewinckele bulletin (2008)

Detailed reference viewed: 9 (0 ULg)
Full Text
Peer Reviewed
See detailCassava: constraints to production and the transfer of biotechnology to African laboratories.
Bull, Simon E.; Ndunguru, Joseph; Gruissem, Wilhelm et al

in Plant cell reports (2011), 30(5), 779-87

Knowledge and technology transfer to African institutes is an important objective to help achieve the United Nations Millennium Development Goals. Plant biotechnology in particular enables innovative ... [more ▼]

Knowledge and technology transfer to African institutes is an important objective to help achieve the United Nations Millennium Development Goals. Plant biotechnology in particular enables innovative advances in agriculture and industry, offering new prospects to promote the integration and dissemination of improved crops and their derivatives from developing countries into local markets and the global economy. There is also the need to broaden our knowledge and understanding of cassava as a staple food crop. Cassava (Manihot esculenta Crantz) is a vital source of calories for approximately 500 million people living in developing countries. Unfortunately, it is subject to numerous biotic and abiotic stresses that impact on production, consumption, marketability and also local and country economics. To date, improvements to cassava have been led via conventional plant breeding programmes, but with advances in molecular-assisted breeding and plant biotechnology new tools are being developed to hasten the generation of improved farmer-preferred cultivars. In this review, we report on the current constraints to cassava production and knowledge acquisition in Africa, including a case study discussing the opportunities and challenges of a technology transfer programme established between the Mikocheni Agricultural Research Institute in Tanzania and Europe-based researchers. The establishment of cassava biotechnology platform(s) should promote research capabilities in African institutions and allow scientists autonomy to adapt cassava to suit local agro-ecosystems, ultimately serving to develop a sustainable biotechnology infrastructure in African countries. [less ▲]

Detailed reference viewed: 8 (0 ULg)
Full Text
Peer Reviewed
See detailThe Cassini Campaign observations of the Jupiter aurora by the Ultraviolet Imaging Spectrograph and the Space Telescope Imaging Spectrograph
Ajello, Joseph M.; Pryor, Wayne; Esposito, Larry et al

in Icarus (2005), 178(2), 327-345

We have analyzed the Cassini Ultraviolet Imaging, Spectrometer (UVIS) observations of the Jupiter aurora with an auroral atmosphere two-stream electron transport code. The observations Of Jupiter by UVIS ... [more ▼]

We have analyzed the Cassini Ultraviolet Imaging, Spectrometer (UVIS) observations of the Jupiter aurora with an auroral atmosphere two-stream electron transport code. The observations Of Jupiter by UVIS took place during the Cassini Campaign. The Cassini Campaign included Support spectral and imaging observations by the Hubble Space Telescope (HST) Space Telescope Imaging Spectrograph (STIS). A major result for the UVIS observations was the identification of a large color variation between the far ultraviolet (FUV: 1100-1700 angstrom) and extreme ultraviolet (EUV: 800-1100 angstrom) spectral regions. This change probably occurs because of a large variation in the ratio of the soft electron flux (10-3000 eV) responsible for the EUV aurora to the hard electron flux (similar to 15-22 keV) responsible for the FUV aurora. On the basis of this result a new color ratio for integrated intensities for EUV and FUV was defined (4 pi I1550-1620 angstrom/4 pi I (1030-1150 angstrom)) which varied by approximately a factor of 6. The FUV color ratio (4 pi I (1550-1620) angstrom/4 pi (1230-1300) (angstrom)) was note stable with a variation of less than 50% for the observations studied. The medium resolution (0.9 angstrom FWHM, G140M grating) FUV observations (1295-1345 angstrom and 1495-1540 angstrom) by STIS on 13 January 2001, on the other hand, were analyzed by a spectral modeling technique using a recently developed high-spectral resolution model for the electron-excited H-2 rotational lines. The STIS FUV data were analyzed with a model that considered the Lyman band spectrum (B (1) Sigma(u)(+) -> X-1 Sigma(g)(+)) as composed of an allowed direct excitation component (X-1 Sigma(g)(+) B-1 (+)(Sigma u)) and an optically forbidden component (X-1 Sigma(g)(+) -> EF, GK, H (H) over bar,.... (1)Sigma(u)(+) followed by the cascade transition (1)Sigma -> B-1 Sigma(u)(+)). The medium-resolution spectral regions for the Jupiter aurora were carefully chosen to emphasize the cascade component. The ratio of the two components is a direct measurement of the mean secondary electron energy of the aurora. The mean secondary electron energy of the aurora varies between 50 and 200 eV for the polar cap, limb and auroral oval observations. We examine a long time base of Galileo Ultraviolet Spectrometer color ratios from the standard mission (1996-1998) and compare them to Cassini UVIS, HST, and International Ultraviolet Explorer (IUE) observations. (c) 2005 Elsevier Inc. All rights reserved. [less ▲]

Detailed reference viewed: 68 (16 ULg)
Full Text
Peer Reviewed
See detailCassini in situ observations of long duration magnetic reconnection in Saturn’s magnetotail
Arridge, C.S.; Eastwood, J.P.; Jackman, C.M. et al

in Nature (2016)

Detailed reference viewed: 10 (2 ULg)
Full Text
Peer Reviewed
See detailCassini nightside observations of the oscillatory motion of Saturn's northern auroral oval
Bunce, E. J.; Grodent, Denis ULg; Jinks, S. L. et al

in Journal of Geophysical Research. Space Physics (2014), 119

recent years we have benefitted greatly from the first in-orbit multi-wavelength images of Saturn's polar atmosphere from the Cassini spacecraft. Specifically, images obtained from the Cassini UltraViolet ... [more ▼]

recent years we have benefitted greatly from the first in-orbit multi-wavelength images of Saturn's polar atmosphere from the Cassini spacecraft. Specifically, images obtained from the Cassini UltraViolet Imaging Spectrograph (UVIS) provide an excellent view of the planet's auroral emissions, which in turn give an account of the large-scale magnetosphere-ionosphere coupling and dynamics within the system. However, obtaining near-simultaneous views of the auroral regions with in situ measurements of magnetic field and plasma populations at high latitudes is more difficult to routinely achieve. Here we present an unusual case, during Revolution 99 in January 2009, where UVIS observes the entire northern UV auroral oval during a 2 h interval while Cassini traverses the magnetic flux tubes connecting to the auroral regions near 21 LT, sampling the related magnetic field, particle, and radio and plasma wave signatures. The motion of the auroral oval evident from the UVIS images requires a careful interpretation of the associated latitudinally "oscillating" magnetic field and auroral field-aligned current signatures, whereas previous interpretations have assumed a static current system. Concurrent observations of the auroral hiss (typically generated in regions of downward directed field-aligned current) support this revised interpretation of an oscillating current system. The nature of the motion of the auroral oval evident in the UVIS image sequence, and the simultaneous measured motion of the field-aligned currents (and related plasma boundary) in this interval, is shown to be related to the northern hemisphere magnetosphere oscillation phase. This is in agreement with previous observations of the auroral oval oscillatory motion. [less ▲]

Detailed reference viewed: 50 (3 ULg)
See detailCassini Ultraviolet Images of Saturn's Aurorae
Pryor, Wayne; Jouchoux, Alain; Esposito, Larry et al

Scientific conference (2014, August 04)

Cassini has been obtaining auroral images and spectra of Saturn with the Ultraviolet Imaging Spectrograph (UVIS). We will present highlights of the auroral images, showing a variety of morphologies ... [more ▼]

Cassini has been obtaining auroral images and spectra of Saturn with the Ultraviolet Imaging Spectrograph (UVIS). We will present highlights of the auroral images, showing a variety of morphologies, including multiple arcs, spiral forms, polar cusp activity, and rotating emission features, some of them pulsating with a roughly 1-hour period. A satellite footprint of Enceladus is occasionally visible. [less ▲]

Detailed reference viewed: 19 (6 ULg)
See detailCassini ultraviolet imaging spectrograph observations of Saturn's auroras
Pryor, W. R.; West, R.; Stewart, A. I. F. et al

Conference (2005, August)

Detailed reference viewed: 6 (0 ULg)
See detailCassini UVIS and HST STIS Time-Resolved Jupiter Auroral Data Compared to QP Radio Bursts
Pryor, W.; Hospodarsky, G.; Stewart, I. et al

Poster (2003)

The Cassini Ultraviolet Imaging Spectrograph (UVIS) observed Jupiter in a 4-sec integration "high time-resolution mode" on Jan 8, 13-14, and 20-21 in 2001. In this mode Extreme-Ultraviolet and Far ... [more ▼]

The Cassini Ultraviolet Imaging Spectrograph (UVIS) observed Jupiter in a 4-sec integration "high time-resolution mode" on Jan 8, 13-14, and 20-21 in 2001. In this mode Extreme-Ultraviolet and Far-Ultraviolet spectra were obtained with reduced spectral and spatial resolution in order to study rapid variations in H2 band and H Lyman alpha emission. Previous work has shown that the region inside Jupiter's main auroral ovals contains highly variable spots of emission (auroral flares) that persist for typically 1 or 2 minutes. This duration is similar to that in Jupiter's quasi-periodic (QP) radio bursts. We compare UVIS data to simultaneous Galileo Plasma Wave Subsystem (PWS) and Cassini Radio and Plasma Wave Subsystem (RPWS) observations. Jan 8 was an active period for UV variability, that we associate with polar auroral flares. There is a correlation between the radio and UV bursts in this period, suggesting that they are related phenomena. We will also explore coordinated Hubble Space Telescope Imaging Spectrograph (STIS) time-tagged UV images from Dec 14 and Dec 16, 2000, and Jan 13-14, and Jan 20-21, 2001 to study the spatial properties of the auroral flares. The auroral emissions inside the main oval were most prominent in the Dec 14, 2000 HST data. We acknowledge support from the Cassini Project, the Space Telescope Science Institute, and the NASA OSS Minority University Initiative. [less ▲]

Detailed reference viewed: 10 (0 ULg)
See detailCassini UVIS Auroral Observations of Jupiter
Pryor, W.; Stewart, A. I. F.; Esposito, L. et al

Conference (2002, July 29)

Detailed reference viewed: 2 (0 ULg)
Full Text
Peer Reviewed
See detailCassini UVIS observations of Jupiter's auroral variability
Pryor, Wayne R.; Stewart, A. Ian F.; Esposito, Larry W. et al

in Icarus: International Journal of Solar System Studies (2005), 178(2), 312-326

The Cassini spacecraft Ultraviolet Imaging Spectrograph (UVIS) obtained observations of Jupiter's auroral emissions in H-2 band systems and H Lyman-alpha from day 275 of 2000 (October 1), to day 81 of ... [more ▼]

The Cassini spacecraft Ultraviolet Imaging Spectrograph (UVIS) obtained observations of Jupiter's auroral emissions in H-2 band systems and H Lyman-alpha from day 275 of 2000 (October 1), to day 81 of 2001 (March 22). Much of the globally integrated auroral variability measured with UVIS can be explained simply in terms of the rotation of Jupiter's main auroral arcs with the planet. These arcs were also imaged by the Space Telescope Imaging Spectrograph (STIS) on Hubble Space Telescope (HST). However, several brightening events were seen by UVIS in which the global auroral output increased by a factor of 2-4. These events persisted over a number of hours and in one case can clearly be tied to a large solar coronal mass ejection event. The auroral UV emissions from these bursts also correspond to hectometric radio emission (0.5-16 MHz) increases reported by the Galileo Plasma Wave Spectrometer (PWS) and Cassim Radio and Plasma Wave Spectrometer (RPWS) experiments. In general, the hectometric radio data vary differently with longitude than the UV data because of radio wave beaming effects. The 2 largest events in the UVIS data were on 2000 day 280 (October 6) and on 2000 days 325-326 (November 20-21). The global brightening events on November 20-21 are compared with corresponding data on the interplanetary magnetic field, solar wind conditions, and energetic particle environment. ACE (Advanced Composition Explorer) solar wind data was numerically propagated from the Earth to Jupiter with an MHD code and compared to the observed event. A second class of brief auroral brightening events seen in HST (and probably UVIS) data that last for similar to 2 min is associated with aurora] flares inside the main auroral ovals. On January 8, 2001, from 18:45-19:35 UT UVIS H-2 band emissions from the north polar region varied quasiperiodically. The varying emissions, probably due to amoral flares inside the main auroral oval, are correlated with low-frequency quasiperiodic radio bursts in the 0.6-5 kHz Galileo PWS data. (c) 2005 Elsevier Inc. All rights reserved. [less ▲]

Detailed reference viewed: 106 (12 ULg)
See detailCassini UVIS Observations of Jupiter's Auroral Variability
Pryor, W. R.; Stewart, A. F.; Esposito, L. W. et al

Poster (2001, October 27)

In the December 2000 Cassini flyby of the Jupiter system, the Cassini Ultraviolet Imaging Spectrograph (UVIS) monitored Jupiter's auroral emissions from day 275 of 2000 to day 81 of 2001. Much of the ... [more ▼]

In the December 2000 Cassini flyby of the Jupiter system, the Cassini Ultraviolet Imaging Spectrograph (UVIS) monitored Jupiter's auroral emissions from day 275 of 2000 to day 81 of 2001. Much of the auroral variability can be explained simply in terms of the rotation of Jupiter's auroral arcs (measured by Hubble Space Telescope) with the planet. However, several brightening events were seen in which the global auroral output increased by a factor of 2-4. These events persisted over a number of hours and are tied to large solar coronal mass ejection events. The auroral UV emissions from these bursts also correspond to hectometric radio emission increases reported by the Galileo and Cassini Radio and Plasma Wave experiments. The 2 largest events were on 2000 day 280 and on 2000 day 325-326. We will look at these events in some detail, and compare them with corresponding information on the interplanetary magnetic field, solar wind conditions, and energetic particle environment to try to understand the cause of these auroral brightness increases. [less ▲]

Detailed reference viewed: 13 (1 ULg)
See detailCassini UVIS Observations of Saturn's Auroras
Pryor, W. J.; Ajello, J. M.; Gustin, Jacques ULg et al

Conference (2007, June 25)

Detailed reference viewed: 15 (3 ULg)
Full Text
Peer Reviewed
See detailCassini UVIS observations of Titan nightglow spectra
Ajello, Joseph M.; West, Robert A.; Gustin, Jacques ULg et al

in Journal of Geophysical Research. Space Physics (2012), 117

In this paper we present the first nightside EUV and FUV airglow limb spectra of Titan showing molecular emissions. The Cassini Ultraviolet Imaging Spectrograph (UVIS) observed photon emissions of Titan's ... [more ▼]

In this paper we present the first nightside EUV and FUV airglow limb spectra of Titan showing molecular emissions. The Cassini Ultraviolet Imaging Spectrograph (UVIS) observed photon emissions of Titan's day and night limb-airglow and disk-airglow on multiple occasions, including during an eclipse observation. The 71 airglow observations analyzed in this paper show EUV (600-1150 Å) and FUV (1150-1900 Å) atomic multiplet lines and band emissions arising from either photoelectron induced fluorescence and solar photo-fragmentation of molecular nitrogen (N[SUB]2[/SUB]) or excitation by magnetosphere plasma. The altitude of the peak UV emissions on the limb during daylight occurred inside the thermosphere at the altitude of the topside ionosphere (near 1000 km altitude). However, at night on the limb, a subset of emission features, much weaker in intensity, arise in the atmosphere with two different geometries. First, there is a twilight photoelectron-excited glow that persists with solar depression angle up to 25-30 degrees past the terminator, until the solar XUV shadow height passes the altitude of the topside ionosphere (1000-1200 km). The UV twilight glow spectrum is similar to the dayglow but weaker in intensity. Second, beyond 120° solar zenith angle, when the upper atmosphere of Titan is in total XUV darkness, there is indication of weak and sporadic nightside UV airglow emissions excited by magnetosphere plasma collisions with ambient thermosphere gas, with similar N[SUB]2[/SUB] excited features as above in the daylight or twilight glow over an extended altitude range. [less ▲]

Detailed reference viewed: 19 (3 ULg)
See detailCassini UVIS Observations of Titan Ultraviolet Airglow Spectra with Laboratory Modeling from Electron- and Proton-Excited N2 Emission Studies
Ajello, J. M.; West, R. A.; Malone, C. P. et al

Conference (2011, December 01)

Joseph M. Ajello, Robert A. West, Rao S. Mangina Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA 91109 Charles P. Malone Jet Propulsion Laboratory, California Institute of ... [more ▼]

Joseph M. Ajello, Robert A. West, Rao S. Mangina Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA 91109 Charles P. Malone Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA 91109 & Department of Physics, California State University, Fullerton, CA 92834 Michael H. Stevens Space Science Division, Naval Research Laboratory, Washington, DC 20375 Jacques Gustin Laboratoire de Physique Atmosphérique et Planétaire, Université de Liège, Liège, Belgium A. Ian F. Stewart, Larry W. Esposito, William E. McClintock, Gregory M. Holsclaw Laboratory for Atmospheric and Space Physics, University of Colorado, Boulder, CO 80303 E. Todd Bradley Department of Physics, University of Central Florida, Orlando, FL 32816 The Cassini Ultraviolet Imaging Spectrograph (UVIS) observed photon emissions of Titan's day and night limb-airglow and disk-airglow on multiple occasions, including three eclipse observations from 2009 through 2010. The 77 airglow observations analyzed in this paper show EUV (600-1150 Å) and FUV (1150-1900 Å) atomic multiplet lines and band emissions (lifetimes less than ~100 μs), including the Lyman-Birge-Hopfield (LBH) band system, arising from photoelectron induced fluorescence and solar photo-fragmentation of molecular nitrogen (N2). The altitude of peak UV emission on the limb of Titan during daylight occurred inside the thermosphere/ionosphere (near 1000 km altitude). However, at night on the limb, the same emission features, but much weaker in intensity, arise in the lower atmosphere below 1000 km (lower thermosphere, mesosphere, haze layer) extending downwards to near the surface at ~300 km, possibly resulting from proton- and/or heavier ion-induced emissions as well as secondary-electron-induced emissions. The eclipse observations are unique. UV emissions were observed during only one of the three eclipse events, and no Vegard-Kaplan (VK) or LBH emissions were seen. Through regression analysis using laboratory spectra, we have analyzed the intensity and identified each spectral feature from the limb or disk emission spectrum. The strongest dipole-allowed transitions of N2 occur in the EUV. The electronic transitions proceed from the X 1Σg+ ground-state to about seven closely spaced (~12-15 eV) Rydberg-valence (RV) states, which are the source of the molecular emissions in the EUV observed by spacecraft and have recently been studied in our laboratory at medium-to-high spectral resolution (delta-λ = 0.1 Å FWHM). Three of these RV states (b 1Πu, b' 1Σu+, and c4' 1Σu+) are highly-perturbed, weakly-to-strongly predissociated, and have significant emission cross sections, which will be summarized in this paper. We will also discuss our recently published proton and electron impact emission cross sections for the LBH (a 1Πg - X 1Σg+) band system of N2, and their significance to the modeling of the day and night FUV spectra of the atmospheres of Earth and Titan. [less ▲]

Detailed reference viewed: 20 (2 ULg)
See detailCassini UVIS Observations of Varying Auroral Emissions on Saturn's Night Side
Pryor, W.; Esposito, L.; Jouchoux, A. et al

Poster (2011, July 11)

Detailed reference viewed: 13 (3 ULg)
Full Text
See detailCassini UVIS Saturn Auroral Images from the 2013 HST/Cassini Campaign
Pryor, Wayne; Jouchoux, Alain; Esposito, Larry et al

Conference (2013, October)

In 2013 coordinated observations of Saturn by the Cassini spacecraft and Hubble Space Telescope (HST) were obtained. During these observations the Cassini spacecraft provided a high-latitude view of ... [more ▼]

In 2013 coordinated observations of Saturn by the Cassini spacecraft and Hubble Space Telescope (HST) were obtained. During these observations the Cassini spacecraft provided a high-latitude view of Saturn's auroras. Intense auroras were observed by the Ultraviolet Imaging Spectrograph (UVIS) from close range (about 5 Saturn radii away). A 6-frame UVIS movie has been constructed from some of the observations from May 20- 21, 2013 showing the evolution of two bright auroral features. We report on the UVIS images, the corresponding spectra, and compare the UVIS data to HST images and data from other Cassini instruments. [less ▲]

Detailed reference viewed: 20 (1 ULg)
See detailCassini UVIS time-resolved Jupiter auroral data compared to QP radio bursts
Pryor, W.; Hospodarsky, G.; Stewart, I. et al

Poster (2003)

The Cassini Ultraviolet Imaging Spectrograph (UVIS) observed Jupiter in a 4-sec integration "high time-resolution mode" on Jan 8, 13-14, and 20-21 in 2001. In this mode Extreme-Ultraviolet and Far ... [more ▼]

The Cassini Ultraviolet Imaging Spectrograph (UVIS) observed Jupiter in a 4-sec integration "high time-resolution mode" on Jan 8, 13-14, and 20-21 in 2001. In this mode Extreme-Ultraviolet and Far-Ultraviolet spectra were obtained with reduced spectral and spatial resolution in order to study rapid variations in H2 band and H Lyman alpha emission. Previous work has shown that the region inside Jupiter's main auroral ovals contains highly variable spots of emission (auroral flares) that persist for typically 1 or 2 minutes. This duration is similar to that in Jupiter's quasi-periodic (QP) radio bursts. We compare UVIS data to simultaneous Galileo Plasma Wave Subsystem (PWS) and Cassini Radio PWS (RPWS) observations. Jan 8 was an active period for UV variability, that we associate with polar auroral flares. There is a correlation between the radio and UV bursts in this period, suggesting that they are related phenomena. We will also explore coordinated Hubble Space Telescope Imaging Spectrograph time-tagged UV images from Jan 13-14 and Jan 20-21, 2001 to study the spatial properties of the auroral flares. [less ▲]

Detailed reference viewed: 9 (0 ULg)