References of "Proceedings of SPIE"
     in
Bookmark and Share    
Full Text
See detailSolar simulation test up to 13 solar constants for the thermal balance of the Solar Orbiter EUI instrument
Rossi, Laurence ULg; zhukova, Maria; Jacques, Lionel ULg et al

in Proceedings of SPIE (2014, June 18)

Solar Orbiter EUI instrument was submitted to a high solar flux to correlate the thermal model of the instrument. EUI, the Extreme Ultraviolet Imager, is developed by a European consortium led by the ... [more ▼]

Solar Orbiter EUI instrument was submitted to a high solar flux to correlate the thermal model of the instrument. EUI, the Extreme Ultraviolet Imager, is developed by a European consortium led by the Centre Spatial de Liège for the Solar Orbiter ESA M-class mission. The solar flux that it shall have to withstand will be as high as 13 solar constants when the spacecraft reaches its 0.28AU perihelion. It is essential to verify the thermal design of the instrument, especially the heat evacuation property and to assess the thermo-mechanical behavior of the instrument when submitted to high thermal load. Therefore, a thermal balance test under 13 solar constants was performed on the first model of EUI, the Structural and Thermal Model. The optical analyses and experiments performed to characterize accurately the thermal and divergence parameters of the flux are presented; the set-up of the test, and the correlation with the thermal model performed to deduce the unknown thermal parameters of the instrument and assess its temperature profile under real flight conditions are also presented. [less ▲]

Detailed reference viewed: 49 (18 ULg)
Full Text
See detailSpace radiation parameters for EUI and the Sun Sensor of Solar Orbiter, ESIO and JUDE instruments
Rossi, Laurence ULg; Jacques, Lionel ULg; Halain, Jean-Philippe ULg et al

in Proceedings of SPIE (2014, June 18)

This paper presents predictions of space radiation parameters for four space instruments performed by the Centre Spatial de Liège (ULg – Belgium); EUI, the Extreme Ultra-violet Instrument, on-board the ... [more ▼]

This paper presents predictions of space radiation parameters for four space instruments performed by the Centre Spatial de Liège (ULg – Belgium); EUI, the Extreme Ultra-violet Instrument, on-board the Solar Orbiter platform; ESIO, Extreme-UV solar Imager for Operations, and JUDE, the Jupiter system Ultraviolet Dynamics Experiment, which was proposed for the JUICE platform. For Solar Orbiter platform, the radiation environment is defined by ESA environmental specification and the determination of the parameters is done through ray-trace analyses inside the EUI instrument. For ESIO instrument, the radiation environment of the geostationary orbit is defined through simulations of the trapped particles flux, the energetic solar protons flux and the galactic cosmic rays flux, taking the ECSS standard for space environment as a guideline. Then ray-trace analyses inside the instrument are performed to predict the particles fluxes at the level of the most radiation-sensitive elements of the instrument. For JUICE, the spacecraft trajectory is built from ephemeris files provided by ESA and the radiation environment is modeled through simulations by JOSE (Jovian Specification Environment model) then ray-trace analyses inside the instrument are performed to predict the particles fluxes at the level of the most radiation-sensitive elements of the instrument. [less ▲]

Detailed reference viewed: 44 (12 ULg)
Full Text
See detailSpectral splitting planar solar concentrator : Design and Experimental testing Preliminary results
Blain, Pascal ULg; Michel, Céline ULg; Clermont, Lionel ULg et al

in Proceedings of SPIE (2014, May 15), 9140

We present a new concept in solar concentrator: spectral splitting. It implies reflective, refractive and diffractive elements that allow two spectrally differentiated beams to reach different and/or ... [more ▼]

We present a new concept in solar concentrator: spectral splitting. It implies reflective, refractive and diffractive elements that allow two spectrally differentiated beams to reach different and/or unmatched lattice solar cells. Those cells efficiencies are then enhanced. The aimed geometrical concentration factor is 5× and the theoretical optical efficiency of that concentrator concept reaches 82%. [less ▲]

Detailed reference viewed: 84 (39 ULg)
Full Text
See detailInvestigation of spectral impacts on the performance of a concentration device using a Fresnel lens combined with a double junction cell
Loicq, Jerôme ULg; Galante, Nicolas ULg; Thibert, Tanguy ULg et al

in Proceedings of SPIE (2014, May 15)

This experimental study was carried out within the context of high concentration photovoltaics. The paper presents the results of an experimental investigation relating to the quantification of the ... [more ▼]

This experimental study was carried out within the context of high concentration photovoltaics. The paper presents the results of an experimental investigation relating to the quantification of the impacts of the chromatic effect on the performance of a double junction GaInP/GaAs solar cell. Chromatic effects are the result of material dispersion caused by the refractive optics component. This study aims to evaluate the effect of the spectral modification of the incident beam on the whole solar concentrator system performance. Such considerations are fundamental in producing a highly accurate design, with which to achieve the best possible system performance. Efficiency is evaluated within the vicinity of the focus of a Fresnel lens designed for concentration. On the optical axis, rays with different wavelengths are not focalized at the same points. The spectral content of the beam depends, therefore, upon the position of the cell along the optical axis. It is assumed that spectral content modification may have an impact on cell performance and, as a consequence, on system efficiency as a whole. Efficiency of the optical Fresnel lens and of the cell were evaluated in relation to spectral content modification. [less ▲]

Detailed reference viewed: 45 (21 ULg)
Full Text
See detailComparison of off-axis TMA and FMA telescopes optimized over different fields of view: applications to Earth observation
Clermont, Lionel ULg; Stockman, Yvan ULg; Dierckx, Wouter et al

in Proceedings of SPIE (2014, May 01), 9131

TMA, or three mirror anastigmats, have already been used successfully for various space missions. In the frame of earth observation, ProbaV satellite uses 3 TMAs to cover a total 102.4° field-of-view ... [more ▼]

TMA, or three mirror anastigmats, have already been used successfully for various space missions. In the frame of earth observation, ProbaV satellite uses 3 TMAs to cover a total 102.4° field-of-view; ground sampling distance is about 100m at the center of field-of view and 370m at the edge. For future earth observation missions, the goal would be to reach 100m spatial resolution all over the 102.4° FOV. This would require to up-scale optical specifications, thus increasing geometrical aberrations. FMA, or four mirror anastigmats, could thus be a good candidate for future missions, as a fourth mirror would allow better correction of optical aberrations. In this work, TMA and FMA have been optimized over different fields-of view. Performance limitations are then derived, which show that FMA seems promising for future missions. Radiometry aspects are discussed and preliminary tolerance analysis is carried out. [less ▲]

Detailed reference viewed: 47 (20 ULg)
Full Text
See detailFirst prototypes of vortex retarders obtained by polarization holography
Piron, Pierre ULg; Blain, Pascal ULg; Décultot, Marc ULg et al

in Proceedings of SPIE (2014, May), 9099

This paper will present the first prototypes of vortex retarders made of photo-orientable liquid crystals polymers recorded without mechanical action using only polarization holography. Vortex retarders ... [more ▼]

This paper will present the first prototypes of vortex retarders made of photo-orientable liquid crystals polymers recorded without mechanical action using only polarization holography. Vortex retarders are birefringent plates characterized by a uniform phase retard and a rotation of their fast axis along their center. Liquid crystals are anisotropic molecules possessing birefringent properties. They are locally orientable and their orientation defines the fast axis orientation of the retarder. Their alignment depends on the local orientation of the recording electric field. The superimposition of several polarized beams will be used to shape the electric field to achieve the recording of vortex retarders. The mathematical aspects of the superimposition process, as well as several numerical simulations are exposed. Finally, the first prototypes are presented, characterized and compared to the numerical simulations. [less ▲]

Detailed reference viewed: 26 (8 ULg)
Full Text
See detailThe Extreme UV Imager of Solar Orbiter – From detailed design to Flight Model
Halain, Jean-Philippe ULg; Rochus, Pierre ULg; Renotte, Etienne ULg et al

in Proceedings of SPIE (2014), 9144

The Extreme Ultraviolet Imager (EUI) on-board the Solar Orbiter mission will provide full-sun and high-resolution image sequences of the solar atmosphere at selected spectral emission lines in the extreme ... [more ▼]

The Extreme Ultraviolet Imager (EUI) on-board the Solar Orbiter mission will provide full-sun and high-resolution image sequences of the solar atmosphere at selected spectral emission lines in the extreme and vacuum ultraviolet. After the breadboarding and prototyping activities that focused on key technologies, the EUI project has completed the design phase and has started the final manufacturing of the instrument and its validation. The EUI instrument has successfully passed its Critical Design Review (CDR). The process validated the detailed design of the Optical Bench unit and of its sub-units (entrance baffles, doors, mirrors, camera, and filter wheel mechanisms), and of the Electronic Box unit. In the same timeframe, the Structural and Thermal Model (STM) test campaign of the two units have been achieved, and allowed to correlate the associated mathematical models. The lessons learned from STM and the detailed design served as input to release the manufacturing of the Qualification Model (QM) and of the Flight Model (FM). The QM will serve to qualify the instrument units and sub-units, in advance of the FM acceptance tests and final on-ground calibration. [less ▲]

Detailed reference viewed: 41 (11 ULg)
Full Text
See detailThe dual-gain 10 µm back-thinned 3k x 3k CMOS-APS detector of the Solar Orbiter Extreme UV Imager
Halain, Jean-Philippe ULg; Debaize, Arnaud ULg; Gillis, Jean-Marie ULg et al

in Proceedings of SPIE (2014), 9144

The Extreme Ultraviolet Imager (EUI) on-board the Solar Orbiter mission will provide image sequences of the solar atmosphere at selected spectral emission lines in the extreme and vacuum ultraviolet. For ... [more ▼]

The Extreme Ultraviolet Imager (EUI) on-board the Solar Orbiter mission will provide image sequences of the solar atmosphere at selected spectral emission lines in the extreme and vacuum ultraviolet. For the two Extreme Ultraviolet (EUV) channels of the EUI instrument, low noise and radiation tolerant detectors with low power consumption and high sensitivity in the 10-40 nm wavelength range are required to achieve the science objectives. In that frame, a dual-gain 10 µm pixel pitch back-thinned 1k x 1k Active Pixel Sensor (APS) CMOS prototype has been tested during the preliminary development phase of the instrument, to validate the pixel design, the expected EUV sensitivity and noise level, and the capability to withstand the mission radiation environment. Taking heritage of this prototype, the detector architecture has been improved and scaled up to the required 3k x 3k array. The dynamic range is increased, the readout architecture enhanced, the power consumption reduced, and the pixel design adapted to the required stitching. The detector packaging has also been customized to fit within the constraints imposed by the camera mechanical, thermal and electrical boundaries. The manufacturing process has also been adapted and back-thinning process improved. Once manufactured and packaged, a batch of sensors will undergo a characterization and calibration campaign to select the best candidates for integration into the instrument qualification and flight cameras. The flight devices, within their cameras, will then be embarked on the EUI instrument, and be the first scientific APS-CMOS detectors for EUV observation of the Sun. [less ▲]

Detailed reference viewed: 79 (12 ULg)
Full Text
Peer Reviewed
See detailSecond harmonic generation from tyrosine containing peptides
Nasir, Mehmet Nail ULg; Bergmann, Emeric; Benichou, Emmanuel et al

in Proceedings of SPIE (2013), 8817

The Second Harmonic Generation (SHG) response from Tyrosine-containing peptides at the air-water interface is presented. First, the quadratic hyperpolarizability of the aromatic amino acid Tyrosine ... [more ▼]

The Second Harmonic Generation (SHG) response from Tyrosine-containing peptides at the air-water interface is presented. First, the quadratic hyperpolarizability of the aromatic amino acid Tyrosine obtained by Hyper Rayleigh Scattering is reported, demonstrating its potentiality as an endogenous molecular probe for SHG studies. Then, the single Tyrosine antimicrobial peptide Mycosubtilin is monitored at the air-water interface and compared to another peptide, Surfactin, lacking a Tyrosine residue. Adsorption kinetics and polarization analysis of the SHG intensity for the peptide monolayers clearly demonstrate that the SHG response from Mycosubtilin arises from Tyrosine. Besides, it confirms that indeed Tyrosine can be targeted as an endogenous molecular probe. [less ▲]

Detailed reference viewed: 17 (2 ULg)
Full Text
Peer Reviewed
See detailSecond harmonic hotspots at the edges of the unit cells in G-shaped gold nanostructures
Valev, VK; Osley, EJ; De Clercq, B et al

in Proceedings of SPIE (2012), 8424

We report our latest results on second harmonic generation (SHG) microscopy from arrays of G-shaped chiral gold nanostructures. The nanostructures are arranged in unit cells composed of four Gs, each ... [more ▼]

We report our latest results on second harmonic generation (SHG) microscopy from arrays of G-shaped chiral gold nanostructures. The nanostructures are arranged in unit cells composed of four Gs, each rotated at 90° with respect to its neighbors. As it has already been demonstrated, for linearly polarized light, these unit cells yield a pattern of four SHG hotspots. However, upon increasing the pitch of the nanostructured arrays, extra hotspots can be observed at the edges of the unit cells. While the origin of these extra hotspots remains to be elucidated, their position indicates a relationship to coupling behavior between the unit cells. [less ▲]

Detailed reference viewed: 14 (0 ULg)
Full Text
Peer Reviewed
See detailRobustness of the scanning second harmonic generation microscopy technique for characterization of hotspot patterns in plasmonic nanomaterials
Valev, VK; De Clercq, B; Zheng, X et al

in Proceedings of SPIE (2012), 8424

Scanning second harmonic generation (SHG) microscopy is becoming an important tool for characterizing nanopatterned metal surfaces and mapping plasmonic local field enhancements. Here we study G-shaped ... [more ▼]

Scanning second harmonic generation (SHG) microscopy is becoming an important tool for characterizing nanopatterned metal surfaces and mapping plasmonic local field enhancements. Here we study G-shaped and mirror-G-shaped gold nanostructures and test the robustness of the experimental results versus the direction of scanning, the numerical aperture of the objective, the magnification, and the size of the laser spot on the sample. We find that none of these parameters has a significant influence on the experimental results. [less ▲]

Detailed reference viewed: 28 (0 ULg)
Full Text
See detailIntegrated prism-free coupled surface plasmon resonance biochemical sensor
Lenaerts, Cedric ULg; Hastanin, Juriy ULg; Pinchemel, Bernard et al

in Proceedings of SPIE (2012), 8424

Detailed reference viewed: 74 (22 ULg)
Full Text
See detailThe Lyman-alpha telescope of the extreme ultraviolet imager on Solar Orbiter
Schühle, Udo; Halain, Jean-Philippe ULg; Meining, Stefan et al

in Proceedings of SPIE (2011), 8148

On the Solar Orbiter mission, the Extreme Ultraviolet Imager (EUI) set of filtergraph-telescopes consists of two high-resolution imagers (HRI) and one dual-band full Sun imager (FSI) that will provide ... [more ▼]

On the Solar Orbiter mission, the Extreme Ultraviolet Imager (EUI) set of filtergraph-telescopes consists of two high-resolution imagers (HRI) and one dual-band full Sun imager (FSI) that will provide images of the solar atmosphere in the extreme ultraviolet and in the Lyman-α line of hydrogen at 121.6 nm. The Lyman-α HRI, in particular, will provide imaging of the upper chromospheres/lower transition region of the Sun at unprecedented high cadence and at an angular resolution of one 1″ (corresponding to a spatial resolution of 200 km at perihelion). For vacuum-ultraviolet imaging of the Sun the main requirements for the instrumentation are high resolution, high cadence, and large dynamic range. We present here the novel solutions of the instrument design and show in detail the predicted performance of this telescope. We describe in detail how the high throughput and spectral purity at 121.6 nm is achieved. The technical solutions include multilayer coatings of the telescope mirrors for high reflectance at 121.6 nm, combined with interference filters and a multichannel-plate intensified CMOS active pixel camera. We make use of the design flexibilities of this camera to optimize the dynamic range in the focal plane. [less ▲]

Detailed reference viewed: 30 (2 ULg)
Full Text
See detailUsing a Savart plate in optical metrology
Blain, Pascal ULg; Michel, Fabrice ULg; Renotte, Yvon ULg et al

in Proceedings of SPIE (2010, August), 7791

Non-contact optical measurement methods are essential tools in many industrial and research domains. A family of new non-contact optical measurement methods based on the polarization states splitting ... [more ▼]

Non-contact optical measurement methods are essential tools in many industrial and research domains. A family of new non-contact optical measurement methods based on the polarization states splitting technique and monochromatic light projection as a way to overcome ambient lighting for in-situ measurement has been developed1,2. Recent works3 on a birefringent element, a Savart plate, allow to build a more flexible and robust interferometer. This interferometer is a multipurpose metrological device. On one hand, the interferometer can be set in front of a CCD camera. This optical measurement system is called a shearography interferometer and allows to measure micro displacement between two states of the studied object under coherent lighting. On the other hand, by producing and shifting multiple sinusoidal Young’s interference patterns with this interferometer, and using a CCD camera, it is possible to build a 3D structured light profilometer. After giving the behavior of the Savart plate, an overview of the two devices will be given as well as their specifications and some applications. [less ▲]

Detailed reference viewed: 54 (12 ULg)
Full Text
See detailFirst light of SWAP on-board PROBA2
Halain, Jean-Philippe ULg; Defise, Jean-Marc ULg; Rochus, Pierre ULg et al

in Proceedings of SPIE (2010), 7732

The SWAP telescope (Sun Watcher using Active Pixel System detector and Image Processing) is an instrument launched on 2nd November 2009 on-board the ESA PROBA2 technological mission. SWAP is a space ... [more ▼]

The SWAP telescope (Sun Watcher using Active Pixel System detector and Image Processing) is an instrument launched on 2nd November 2009 on-board the ESA PROBA2 technological mission. SWAP is a space weather sentinel from a low Earth orbit, providing images at 174 nm of the solar corona. The instrument concept has been adapted to the PROBA2 mini-satellite requirements (compactness, low power electronics and a-thermal opto-mechanical system). It also takes advantage of the platform pointing agility, on-board processor, Packetwire interface and autonomous operations. The key component of SWAP is a radiation resistant CMOS-APS detector combined with onboard compression and data prioritization. SWAP has been developed and qualified at the Centre Spatial de Liège (CSL) and calibrated at the PTB-Bessy facility. After launch, SWAP has provided its first images on 14th November 2009 and started its nominal, scientific phase in February 2010, after 3 months of platform and payload commissioning. This paper summarizes the latest SWAP developments and qualifications, and presents the first light results. [less ▲]

Detailed reference viewed: 144 (7 ULg)
Full Text
Peer Reviewed
See detailA gas micromechanical sensor based on surface plasmon resonance
Hastanin, Juriy ULg; Habraken, Serge ULg; Renotte, Yvon ULg et al

in Proceedings of SPIE (2008, October 02), 7116

We will present a new concept related to the micromechanical sensors for detecting the presence and concentration of chemical substances and/or biological organisms. A bi-dimensional array of micro ... [more ▼]

We will present a new concept related to the micromechanical sensors for detecting the presence and concentration of chemical substances and/or biological organisms. A bi-dimensional array of micro-cantilever coated by different types of sensing layer enables to identify a characteristic chemical composition of the gas in real-time mode. The selective molecular absorption by cantilever sensing layer will produce cantilever bending proportional to the concentration of molecules. To increase the gas sensor sensitivity, the SPR phenomenon is used for cantilever deflection monitoring. [less ▲]

Detailed reference viewed: 28 (2 ULg)
Full Text
See detailThe JWST MIRI Double-Prism, Design and Science Drivers
Fisher, Sebastian; Rossi, Laurence ULg; Renotte, Etienne ULg et al

in Proceedings of SPIE (2008, July 12), 7010

We present how it is achieved to mount a double prism in the filter wheel of MIRIM - the imager of JWST’s Mid Infrared Instrument. In order to cope with the extreme conditions of the prisms’ surroundings ... [more ▼]

We present how it is achieved to mount a double prism in the filter wheel of MIRIM - the imager of JWST’s Mid Infrared Instrument. In order to cope with the extreme conditions of the prisms’ surroundings, the low resolution double prism assembly (LRSDPA) design makes high demands on manufacturing accuracy. The design and the manufacturing of the mechanical parts are presented here, while ’Manufacturing and verification of ZnS and Ge prisms for the JWST MIRI imager’ are described in a second paper [1]. We also give insights on the astronomical possibilities of a sensitive MIR spectrometer. Low resolution prism spectroscopy in the wavelength range from 5-10 microns will allow to spectroscopically determine redshifts of objects close to/at the re-ionization phase of the universe. [less ▲]

Detailed reference viewed: 220 (1 ULg)
Full Text
See detailManufacturing and verification of ZnS and Ge prisms for the JWST MIRI imager
Rossi, Laurence ULg; Renotte, Etienne ULg; Plesseria, Jean-Yves ULg et al

in Proceedings of SPIE (2008, June 23), 7018

The JWST Mid-Infrared Instrument (MIRI) is designed to meet the JWST science requirements for mid-IR capabilities and includes an Imager MIRIM provided by CEA (France). A double-prism assembly (DPA ... [more ▼]

The JWST Mid-Infrared Instrument (MIRI) is designed to meet the JWST science requirements for mid-IR capabilities and includes an Imager MIRIM provided by CEA (France). A double-prism assembly (DPA) allows MIRIM to perform low-resolution spectroscopy. The MIRIM DPA shall meet a number of challenging requirements in terms of optical and mechanical constraints, especially severe optical tolerances, limited envelope and very high vibration loads. <br />The University of Cologne (Germany) and the Centre Spatial de Liege (Belgium) are responsible for design, manufacturing, integration, and testing of the prism assembly. A companion paper (Fischer et al. 2008) is presenting the science drivers and mechanical design of the DPA, while this paper is focusing on optical manufacturing and overall verification processes. <br />The first part of this paper describes the manufacturing of Zinc-sulphide and Germanium prisms and techniques to ensure an accurate positioning of the prisms in their holder. (1) The delicate manufacturing of Ge and ZnS materials and (2) the severe specifications on the bearing and optical surfaces flatness and the tolerance on the prism optical angles make this process innovating. The specifications verification is carried out using mechanical and optical measurements; the implemented techniques are described in this paper. <br />The second part concerns the qualification program of the double-prism assembly, including the prisms, the holder and the prisms anti-reflective coatings qualification. Both predictions and actual test results are shown. [less ▲]

Detailed reference viewed: 43 (12 ULg)
Full Text
Peer Reviewed
See detailHigh density resolution synchrotron radiation based X-ray microtomography (SR mu CT) for quantitative 3D-morphometrics in zoological sciences
Nickel, Michael; Hammel, Jörg U; Herzen, Julia et al

in Proceedings of SPIE (2008), 7078

Zoological sciences widely rely on morphological data to reconstruct and understand body structures of animals. The best suitable methods like tomography allow for a direct representation of 3D-structures ... [more ▼]

Zoological sciences widely rely on morphological data to reconstruct and understand body structures of animals. The best suitable methods like tomography allow for a direct representation of 3D-structures. In recent years, synchrotron radiation based X-ray microtomography (SR mu CT) placed high resolutions to the disposal of morphologists. With the development of highly brilliant and collimated third generation synchrotron sources, phase contrast SR mu CT became widely available. A number of scientific contributions stressed the superiority of phase contrast over absorption contrast. However, here we demonstrate the power of high density resolution methods based on absorption-contrast SR mu CT for quantitative 3D-measurements of tissues and other delicate bio-structures in zoological sciences. We used beamline BW2 at DORIS III (DESY, Hamburg, Germany) to perform microtomography on tissue and mineral skeletons of marine sponges (Porifera) which were shock frozen and/or fixed in a glutamate osmium tetroxide solution, followed by critical point drying. High density resolution tomographic reconstructions allowed running quantitative 3D-image analyses in Matlab and ImageJ. By applying contrast and shape rule based algorithms we semi-automatically extracted and measured sponge body structures like mineral spicules, elements of the canal system or tissue structures. This lead to a better understanding of sponge biology: from skeleton functional morphology and internal water flow regimes to body contractility. Our high density resolution based quantitative approach can be applied to a wide variety of biological structures. However, two prerequisites apply: (1) maximum density resolution is necessary; (2) edge effects as seen for example in phase outline contrast SR mu CT must not be present. As a consequence, to allow biological sciences to fully exploit the power of SR mu CT further increase of density resolution in absorption contrast methods is desirable. [less ▲]

Detailed reference viewed: 50 (0 ULg)
Full Text
Peer Reviewed
See detailQuantum imaging with uncorrelated single photon sources
Bastin, Thierry ULg

in Proceedings of SPIE (2008)

We propose a technique to obtain sub-wavelength resolution using photons from uncorrelated single photon sources. The method employs N photons of wavelength λ spontaneously emitted from N atoms and ... [more ▼]

We propose a technique to obtain sub-wavelength resolution using photons from uncorrelated single photon sources. The method employs N photons of wavelength λ spontaneously emitted from N atoms and subsequently detected by N detectors. We demonstrate that for certain detector positions the N-th order correlation function as a function of the first detector position is a pure sinusoidal oscillation with a fringe spacing of λ/N and a contrast of 100%. The result corresponds to an N-fold increase in resolution compared to classical microscopy. Our technique is also capable of imaging a distinct physical object with sub-Rayleigh resolution. [less ▲]

Detailed reference viewed: 28 (4 ULg)