References of "Planetary and Space Science"
     in
Bookmark and Share    
Full Text
Peer Reviewed
See detailIsolating auroral FUV emission lines using compact, broadband instrumentation
Molyneux, P.M.; Bannister, N.P.; Bunce, E.J. et al

in Planetary and Space Science (in press)

Images of auroral emissions at far ultraviolet (FUV, 122–200 nm) wavelengths are useful tools with which to study magnetospheric-ionospheric coupling, as the scattered sunlight background in this region ... [more ▼]

Images of auroral emissions at far ultraviolet (FUV, 122–200 nm) wavelengths are useful tools with which to study magnetospheric-ionospheric coupling, as the scattered sunlight background in this region is low, allowing both dayside and nightside auroras to be imaged simultaneously. The ratio of intensities between certain FUV emission lines or regions can be used to characterise the precipitating particles responsible for auroral emissions, and hence is a useful diagnostic of magnetospheric dynamics. Here, we describe how the addition of simple transmission filters to a compact broadband imager design allows far ultraviolet emission ratios to be deduced while also providing large-scale instantaneous images of the aurora. The low mass and volume of such an instrument would make it well-suited for both small satellite Earth-orbiting missions and larger outer planet missions from which it could be used to characterise the tenuous atmospheres observed at several moons, as well as studying the auroral emissions of the gas giants. We present a study to investigate the accuracy of a technique to allow emission line ratio retrieval, as applied to the OI 130.4 nm and 135.6 nm emissions at Ganymede. The ratio of these emissions provides information about the atmospheric composition, specifically the relative abundances of O and O2. Using modelled FUV spectra representative of Ganymede's atmosphere, based on observations by the Hubble Space Telescope (HST) Space Telescope Imaging Spectrograph (STIS), we find that the accuracy of the retrieved ratios is a function of the magnitude of the ratio, with the best measurements corresponding to a ratio of ∼1.3 . [less ▲]

Detailed reference viewed: 6 (1 ULg)
Full Text
Peer Reviewed
See detailThe science case for an orbital mission to Uranus: Exploring the origins and evolution of ice giant planets
Arridge, C. S.; Achilleos, N.; Agarwal, J. et al

in Planetary and Space Science (2014), (0), -

Abstract Giant planets helped to shape the conditions we see in the Solar System today and they account for more than 99% of the mass of the Sun's planetary system. They can be subdivided into the Ice ... [more ▼]

Abstract Giant planets helped to shape the conditions we see in the Solar System today and they account for more than 99% of the mass of the Sun's planetary system. They can be subdivided into the Ice Giants (Uranus and Neptune) and the Gas Giants (Jupiter and Saturn), which differ from each other in a number of fundamental ways. Uranus, in particular is the most challenging to our understanding of planetary formation and evolution, with its large obliquity, low self-luminosity, highly asymmetrical internal field, and puzzling internal structure. Uranus also has a rich planetary system consisting of a system of inner natural satellites and complex ring system, five major natural icy satellites, a system of irregular moons with varied dynamical histories, and a highly asymmetrical magnetosphere. Voyager 2 is the only spacecraft to have explored Uranus, with a flyby in 1986, and no mission is currently planned to this enigmatic system. However, a mission to the uranian system would open a new window on the origin and evolution of the Solar System and would provide crucial information on a wide variety of physicochemical processes in our Solar System. These have clear implications for understanding exoplanetary systems. In this paper we describe the science case for an orbital mission to Uranus with an atmospheric entry probe to sample the composition and atmospheric physics in Uranus’ atmosphere. The characteristics of such an orbiter and a strawman scientific payload are described and we discuss the technical challenges for such a mission. This paper is based on a white paper submitted to the European Space Agency's call for science themes for its large-class mission programme in 2013. [less ▲]

Detailed reference viewed: 5 (2 ULg)
Full Text
Peer Reviewed
See detailHow could the Io footprint disappear?
Hess, Sébastien; Bonfond, Bertrand ULg; Delamere, Peter

in Planetary and Space Science (2013), 89

The interaction of Io with the Jovian magnetosphere is the best known – and the most intense – case of satellite-magnetosphere interaction. The interaction involves a power of more than a TeraWatt, a few ... [more ▼]

The interaction of Io with the Jovian magnetosphere is the best known – and the most intense – case of satellite-magnetosphere interaction. The interaction involves a power of more than a TeraWatt, a few percent of which are transferred to electrons. These electrons precipitate in the Jovian ionosphere where they light-up bright auroral emissions (several 100's kR to a few 1000's kR). The brightness of the Io-controlled UV auroras is known to vary, due to the Jovian magnetic field tilt, which induces longitudinal variations, and due to the Io torus ever changing parameters (possibly due to Io's volcanic activity), which induce a temporal variation. As Io-controlled UV auroras have been monitored for a long time, the variation of their brightness is well-documented, and the typical amplitude of these variations has been established. However, on June, 7th 2012 an unusual event occurred in the plasma torus surrounding Io, which triggered its own UV emissions on Jupiter in a region mapping to Io's orbit. When Io reached that region, Io's auroral footprint disappeared, its brightness dimming by at least a factor of three to be below the background aurora brightness. Both the auroral event at such a low latitude and the Io footprint disappearance are events that have never been observed before and should be quite rare. However, the question of how the bright Io footprint becomes that weak remains. From a theoretical point-of-view, the Io-Jupiter interaction has been widely studied. In the 80's, it was shown that Alfvén waves are radiated from Io, carrying currents to Jupiter. In the late-2000's, studies showed that dispersive Alfvén waves were likely to cause the acceleration of the electrons powering the auroral emissions, although Io-scale Alfvén waves should be non-dispersive. More recently, a model was built which permits one to compute the ratio between dispersive and non-dispersive waves in the auroral region for satellite-magnetosphere interactions, and thus the brightness of the related aurorae. We use this model to investigate which variation of the interaction parameters could lead to the Io footprint disappearance. [less ▲]

Detailed reference viewed: 20 (3 ULg)
Full Text
Peer Reviewed
See detailEvolution of the Io Footprint Brightness II: Modeling
Hess, Sébastien; Bonfond, Bertrand ULg; Chantry, Virginie ULg et al

in Planetary and Space Science (2013), 88

The interaction of Io with the Jovian magnetosphere creates the best known and brightest satellite-controlled aurorae in our solar system. These aurorae are generated by the precipitation of electrons ... [more ▼]

The interaction of Io with the Jovian magnetosphere creates the best known and brightest satellite-controlled aurorae in our solar system. These aurorae are generated by the precipitation of electrons, which are accelerated by the Alfvén waves carrying the current between the satellite and the planet. A recent study computed the energy deposited on top of Jupiter's ionosphere due to the electron precipitation and retrieved the correct mean brightness of Io-related aurorae. The model developed in this study takes into account the acceleration mechanism and the Alfvén wave propagation effects. We use the same method to investigate the brightness variation of the different components of the Io footprint as a function of longitude. These observations are discussed in a companion paper. We identify several effects that act together to modulate the footprint brightness such as Alfvén wave reflections, magnetic mirroring of the electrons, the local interaction at Io and kinetic effects close to Jupiter. We identify the effects contributing the most to the modulation of the brightnesses of the three brightest components of the Io footprints: the main and reflected Alfvén wing spots and the transhemispheric electron spot. We show in particular that the modulation of the efficiency of the electron acceleration can be of greater importance than the modulation of the power generated at Io. We reproduce the average modulation of the spot brightnesses and present an extensive discussion of possible explanations for the observed features not reproduced by our model. [less ▲]

Detailed reference viewed: 16 (8 ULg)
Full Text
Peer Reviewed
See detailEvolution of the Io footprint brightness I: Far-UV observations
Bonfond, Bertrand ULg; Hess, Sébastien; Gérard, Jean-Claude ULg et al

in Planetary and Space Science (2013), 88

The Io footprint (IFP) is a set of auroral spots and an extended tail resulting from the strong interaction between Io and the Jovian magnetosphere. For the first time, we present measurements of the ... [more ▼]

The Io footprint (IFP) is a set of auroral spots and an extended tail resulting from the strong interaction between Io and the Jovian magnetosphere. For the first time, we present measurements of the brightness and precipitated power for each individual spot, using the image database gathered from 1997 to 2009 with the Hubble Space Telescope in the Far-UV domain. We show that the relative brightness of the spots varies with the System III longitude of Io. Moreover, our novel measurement method based on 3D simulations of the auroral features allows to derive the precipitated energy fluxes from images on which the emission region is observed at a slant angle. Peak values as high as 2 W/m² are observed for the main spot, probably triggering a localized and sudden heating of the atmosphere. Additionally, strong brightness differences are observed from one hemisphere to another. This result indicates that the location of Io in the plasma torus is not the only parameter to control the brightness, but that the magnetic field asymmetries also play a key role. Finally, we present new data confirming that significant variations of the spots' brightness on timescales of 2-4 minutes are ubiquitous, which suggests a relationship with intermittent double layers close to Jovian surface. [less ▲]

Detailed reference viewed: 52 (31 ULg)
Full Text
Peer Reviewed
See detailAuroral counterpart of magnetic field dipolarizations in Saturn’s tail
Jackman, C.M.; Achilleos, N.; Cowley, S.W.H. et al

in Planetary and Space Science (2013)

Detailed reference viewed: 17 (4 ULg)
Full Text
Peer Reviewed
See detailThe OH Venus nightglow spectrum: intensity and vibrational composition from VIRTIS-Venus Express observations
Soret, Lauriane ULg; Gérard, Jean-Claude ULg; Piccioni, Giuseppe et al

in Planetary and Space Science (2012), 73(1),

Limb spectra of the OH nightglow emission corresponding to the ∆v=1 and ∆v=2 sequences have been collected with the VIRTIS infrared imaging spectrograph on board Venus Express between April 2006 and ... [more ▼]

Limb spectra of the OH nightglow emission corresponding to the ∆v=1 and ∆v=2 sequences have been collected with the VIRTIS infrared imaging spectrograph on board Venus Express between April 2006 and October 2008. A detailed statistical analysis shows that the peak intensity and altitude of the two vibrational sequences are significantly correlated, with a mean intensity ratio of the two sequences of 0.38±0.37. The altitude of the maximum of the ∆v=2 emission is located ~1 km lower than ∆v=1. A spectral analysis shows that the Δv=1 sequence is composed at 44.6% by the (1–0) band, 9.3% by the (3–2) band and 7.1% by the (4–3) band. The Δv=2 emission is best fitted if solely including the (2–0) band. A non-LTE model of OH vibrational population by the O3+H reaction including radiative and collisional relaxation has been used to compare the expected spectral distribution, the altitude of the emission peak and the emission rate under different assumptions on the quenching processes to those observed with VIRTIS. The adopted carbon dioxide, atomic oxygen and ozone densities are based on recent Venus Express remote sensing measurements. We find that the “sudden death” quenching scheme by CO2 produces inadequate spectral distribution between the various bands and insufficient airglow brightness. Instead, the observed spectral distribution and the total emission intensity are reasonably well reproduced with the single quantum jump model, a O density profile peaking at 103.5 km with a maximum value of 1.9×1011 cm−3, a O3 density profile peaking at 5.8×106 cm−3 at 96.5 km and a H density profile close to 108 cm−3 between 90 and 120 km, in agreement with several photochemical models. [less ▲]

Detailed reference viewed: 18 (2 ULg)
Full Text
Peer Reviewed
See detailFrom meteorites to evolution and habitability of planets
Dehant, Véronique; Breuer, Doris; Claeys, Philippe et al

in Planetary and Space Science (2012)

Detailed reference viewed: 35 (6 ULg)
Full Text
Peer Reviewed
See detailMeasurements of the helium 584 Å airglow during the Cassini flyby of Venus
Gérard, Jean-Claude ULg; Gustin, Jacques ULg; Hubert, Benoît ULg et al

in Planetary and Space Science (2011), 59

The helium resonance line at 584 Å has been observed with the UltraViolet Imaging Spectrograph (UVIS) Extreme Ultraviolet channel during the flyby of Venus by Cassini at a period of high solar activity ... [more ▼]

The helium resonance line at 584 Å has been observed with the UltraViolet Imaging Spectrograph (UVIS) Extreme Ultraviolet channel during the flyby of Venus by Cassini at a period of high solar activity. The brightness was measured along the disk from the morning terminator up to the bright limb near local noon. The mean disk intensity was ˜320 R, reaching ˜700 R at the bright limb. These values are slightly higher than those determined from previous observations. The sensitivity of the 584 Å intensity to the helium abundance is analyzed using recent cross-sections and solar irradiance measurements at 584 Å. The intensity distribution along the UVIS footprint on the disk is best reproduced using the EUVAC solar flux model and the helium density distribution from the VTS3 empirical model. It corresponds to a helium density of 8×10[SUP]6[/SUP] cm[SUP]-3[/SUP] at the level of where the CO[SUB]2[/SUB] is 2×10[SUP]10[/SUP] cm[SUP]-3[/SUP]. [less ▲]

Detailed reference viewed: 16 (4 ULg)
Full Text
Peer Reviewed
See detailTwo-dimensional time-dependent model of the transport of minor species in the Venus night side upper atmosphere
Collet, Arnaud ULg; Cox, Cédric ULg; Gérard, Jean-Claude ULg

in Planetary and Space Science (2010), 58

We present a numerical tool developed to quantify the role of processes controlling the spatio-temporal distribution of the NO ultraviolet and O2 infrared nightglows in the Venus night side upper ... [more ▼]

We present a numerical tool developed to quantify the role of processes controlling the spatio-temporal distribution of the NO ultraviolet and O2 infrared nightglows in the Venus night side upper atmosphere, observed with the VIRTIS and SPICAV instruments on board Venus Express. This numerical tool consists in a two-dimensional chemical-transport time-dependent model which computes in a hypothetical rectangular solving domain the spatio-temporal distributions of the number densities of the four minor species at play in these two nightglow emissions. The coupled nonlinear system of the four partial differential equations, describing the spatio-temporal variations of the minorspecies, has been solved using a finite volume method with a forward Euler method for the time integration scheme. As an application, we have first simulated a time-constant supply of atoms through the upper boundary of the solving domain. The fluxes are inhomogeneous relative to its horizontal direction, in order to simulate regions of enhanced downward flow of oxygen and nitrogen giving rise to NO and O2 brightening. Given that these two emissions show large time variations, we have also simulated a time-dependent downward flux of O and N atoms. It results from these simulations that the lack of correlation between the NO and O2 nightglows largely result from to the coupling between horizontal and vertical transport processes and the very different chemical lifetimes of the two species. In particular,we have quantified the role of each process generating spatio-temporal de-correlations between the NO and O2 nightglows. [less ▲]

Detailed reference viewed: 69 (44 ULg)
Full Text
Peer Reviewed
See detailLead angles and emitting electron energies of Io-controlled decameter radio arcs
Hess, S. L. G.; Petin, A.; Zarka, P. et al

in Planetary and Space Science (2010), 58(10), 1188-1198

The Io-controlled radio arcs are emissions in the decametric radio range which appear arc shaped in the time-frequency plane. Their occurrence is controlled by Io's position, so it has been for long ... [more ▼]

The Io-controlled radio arcs are emissions in the decametric radio range which appear arc shaped in the time-frequency plane. Their occurrence is controlled by Io's position, so it has been for long inferred that they are powered by the Io-Jupiter electrodynamic interaction. Their frequency ranges correspond to the electron cyclotron frequencies along the Io Flux tube, so they are expected to be generated by cyclotron maser instability (CMI). The arc shape was proposed to be a consequence of the strong anisotropy of the decametric radio emissions beaming, combined with the topology of the magnetic field in the source and the observation geometry. Recent papers succeeded at reproducing the morphologies of a few typical radio arcs by modeling in three dimensions the observation geometry, using the best available magnetic field model and a beaming angle variation consistent with a loss-cone driven CMI. In the continuation of these studies, we present here the systematic modeling of a larger number of observations of the radio arcs emitted in Jupiter's southern hemisphere (including multiple arcs or arcs exhibiting abrupt changes of shape), which permits to obtain a statistical determination of the emitting field line localization (lead angle) relative to the instantaneous Io field line, and of the emitting particle velocities or energies. Variations of these parameters relative to Io's longitude are also measured and compared to the location of the UV footprints of the Io-Jupiter interaction. It is shown that the data are better organized in a reference frame attached to the UV spot resulting from the main Alfven wing resulting from the Io-Jupiter interaction. It is proposed that the radio arcs are related to the first reflected Alfven wing rather than to the main one. (C) 2010 Elsevier Ltd. All rights reserved. [less ▲]

Detailed reference viewed: 29 (0 ULg)
Full Text
Peer Reviewed
See detailRecurrent energization of plasma in the midnight-to-dawn quadrant of Saturn's magnetosphere, and its relationship to auroral UV and radio emissions
Mitchell, D. G.; Krimigis, S. M.; Paranicas, C. et al

in Planetary and Space Science (2009), 57

We demonstrate that under some magnetospheric conditions protons and oxygen ions are accelerated once per Saturn magnetosphere rotation, at a preferred local time between midnight and dawn. Although ... [more ▼]

We demonstrate that under some magnetospheric conditions protons and oxygen ions are accelerated once per Saturn magnetosphere rotation, at a preferred local time between midnight and dawn. Although enhancements in energetic neutral atom (ENA) emission may in general occur at any local time and at any time in a Saturn rotation, those enhancements that exhibit a recurrence at a period very close to Saturn's rotation period usually recur in the same magnetospheric location. We suggest that these events result from current sheet acceleration in the 15-20 Rs range, probably associated with reconnection and plasmoid formation in Saturn's magnetotail. Simultaneous auroral observations by the Hubble Space Telescope (HST) and the Cassini Ultraviolet Imaging Spectrometer (UVIS) suggest a close correlation between these dynamical magnetospheric events and dawn-side transient auroral brightenings. Likewise, many of the recurrent ENA enhancements coincide closely with bursts of Saturn kilometric radiation, again pointing to possible linkage with high latitude auroral processes. We argue that the rotating azimuthal asymmetry of the ring current pressure revealed in the ENA images creates an associated rotating field aligned current system linking to the ionosphere and driving the correlated auroral processes. [less ▲]

Detailed reference viewed: 25 (8 ULg)
Full Text
Peer Reviewed
See detailWater and related chemistry in the solar system. A guaranteed time key programme for Herschel
Hartogh, P.; Lellouch, E.; Crovisier, J. et al

in Planetary and Space Science (2009), 57

â Water and related chemistry in the Solar Systemâ is a Herschel Space Observatory Guaranteed-Time Key Programme. This project, approved by the European Space Agency, aims at determining the distribution ... [more ▼]

â Water and related chemistry in the Solar Systemâ is a Herschel Space Observatory Guaranteed-Time Key Programme. This project, approved by the European Space Agency, aims at determining the distribution, the evolution and the origin of water in Mars, the outer planets, Titan, Enceladus and the comets. It addresses the broad topic of water and its isotopologues in planetary and cometary atmospheres. The nature of cometary activity and the thermodynamics of cometary comae will be investigated by studying water excitation in a sample of comets. The D/H ratio, the key parameter for constraining the origin and evolution of Solar System species, will be measured for the first time in a Jupiter-family comet. A comparison with existing and new measurements of D/H in Oort-cloud comets will constrain the composition of pre-solar cometary grains and possibly the dynamics of the protosolar nebula. New measurements of D/H in giant planets, similarly constraining the composition of proto-planetary ices, will be obtained. The D/H and other isotopic ratios, diagnostic of Marsâ atmosphere evolution, will be accurately measured in H[SUB]2[/SUB]O and CO. The role of water vapor in Marsâ atmospheric chemistry will be studied by monitoring vertical profiles of H[SUB]2[/SUB]O and HDO and by searching for several other species (and CO and H[SUB]2[/SUB]O isotopes). A detailed study of the source of water in the upper atmosphere of the Giant Planets and Titan will be performed. By monitoring the water abundance, vertical profile, and input fluxes in the various objects, and when possible with the help of mapping observations, we will discriminate between the possible sources of water in the outer planets (interplanetary dust particles, cometary impacts, and local sources). In addition to these inter-connected objectives, serendipitous searches will enhance our knowledge of the composition of planetary and cometary atmospheres. [less ▲]

Detailed reference viewed: 52 (14 ULg)
Full Text
Peer Reviewed
See detailIsotopic abundance in the CN coma of comets: Ten years of measurements
Schulz, R.; Jehin, Emmanuel ULg; Manfroid, Jean ULg et al

in Planetary and Space Science (2008), 56

Over the past 10 years the isotopic ratios of carbon ([SUP]12[/SUP]C/[SUP]13[/SUP]C) and nitrogen ([SUP]14[/SUP]N/[SUP]15[/SUP]N) have been determined for a dozen comets, bright enough to allow obtaining ... [more ▼]

Over the past 10 years the isotopic ratios of carbon ([SUP]12[/SUP]C/[SUP]13[/SUP]C) and nitrogen ([SUP]14[/SUP]N/[SUP]15[/SUP]N) have been determined for a dozen comets, bright enough to allow obtaining the required measurements from the ground. The ratios were derived from high-resolution spectra of the CN coma measured in the B[SUP]2[/SUP]â [SUP]+[/SUP]â X[SUP]2[/SUP]â [SUP]+[/SUP] (0, 0) emission band around 387 nm. The observed comets belong to different dynamical classes, including dynamically new as well as long- and short-period comets from the Halley- and Jupiter-family. In some cases the comets could be observed at various heliocentric distances. All values determined for the carbon and nitrogen isotopic ratios were consistent within the error margin irrespective of the type of comet or the heliocentric distance at which it was observed. Our investigations resulted in average ratios of [SUP]12[/SUP]C/[SUP]13[/SUP]C=91±21 and nitrogen [SUP]14[/SUP]N/[SUP]15[/SUP]N=141±29. Whilst the value for the carbon isotopic ratio is in good agreement with the solar and terrestrial value of 89, the nitrogen isotopic ratio is very different from the telluric value of 272. [less ▲]

Detailed reference viewed: 27 (2 ULg)
Full Text
Peer Reviewed
See detailThe Venus ultraviolet oxygen dayglow and aurora: Model comparison with observations
Gérard, Jean-Claude ULg; Hubert, Benoît ULg; Shematovich, V. I. et al

in Planetary and Space Science (2008), 56

We compare the intensity of the OI 130.4 and 135.6 nm emissions calculated using the soft electron precipitation measured on board the Pioneer Venus (PV) Orbiter with the auroral brightness observed with ... [more ▼]

We compare the intensity of the OI 130.4 and 135.6 nm emissions calculated using the soft electron precipitation measured on board the Pioneer Venus (PV) Orbiter with the auroral brightness observed with the ultraviolet spectrometer (OUVS) on board the PV. For this purpose, we use a new electron transport model based on a Monte Carlo implementation of the Boltzmann equation and a multi-stream radiative transfer model to calculate the effects of multiple scattering on the intensity field of the 130.4-nm triplet. We show that the consideration of the enhancement of the emergent 130.4-nm to the 135.6-nm intensity by multiple scattering in the optically thick Venus atmosphere increases the auroral 130.4/135.6 ratio by a factor of about 3. We find agreement with the mean 130.4/135.6 ratio observed with PV-OUVS using the typical suprathermal electron energy spectrum reported from PV in situ measurements showing a characteristic energy of about 14 eV. To account for the average OI auroral emissions, the required precipitated energy flux is 2×10[SUP]-3[/SUP] mW m[SUP]-2[/SUP], that is about 30% of the measured suprathermal night-side soft electron spectrum used as a reference. The calculated brightness of the CO Cameron bands is about twice as large as the weak observed emission, but within the error bars of the observations and the uncertainties of the dissociative excitation cross-section of CO[SUB]2[/SUB]. The electron transport model, coupled with calculations of excitation processes is also applied to an analysis of the FUV oxygen day airglow observations made with PV-OUVS and the Hopkins Ultraviolet Telescope (HUT) spectrograph. Comparisons indicate that the model accounts for both the disc-averaged intensities observed with the HUT spectrograph, the limb scans and the 130.4-nm images obtained with PV-OUVS. The relative contribution of resonance scattering of the solar line and photoelectron impact to the excitation of the 130.4-nm triplet depends on the altitude, but is globally dominated by resonance scattering. The intensity of the 130.4-nm dayglow emission does not vary proportionally with the O density in the lower thermosphere, but provides nevertheless a useful tool to remotely probe the atomic oxygen density and its variations. [less ▲]

Detailed reference viewed: 22 (5 ULg)
Full Text
Peer Reviewed
See detailSPICAV on Venus Express: Three spectrometers to study the global structure and composition of the Venus atmosphere
Bertaux, Jean-Loup; Nevejans, D.; Korablev, O. et al

in Planetary and Space Science (2007), 55

Spectroscopy for the investigation of the characteristics of the atmosphere of Venus (SPICAV) is a suite of three spectrometers in the UV and IR range with a total mass of 13.9 kg flying on the Venus ... [more ▼]

Spectroscopy for the investigation of the characteristics of the atmosphere of Venus (SPICAV) is a suite of three spectrometers in the UV and IR range with a total mass of 13.9 kg flying on the Venus Express (VEX) orbiter, dedicated to the study of the atmosphere of Venus from ground level to the outermost hydrogen corona at more than 40,000 km. It is derived from the SPICAM instrument already flying on board Mars Express (MEX) with great success, with the addition of a new IR high-resolution spectrometer, solar occultation IR (SOIR), working in the solar occultation mode. The instrument consists of three spectrometers and a simple data processing unit providing the interface of these channels with the spacecraft. A UV spectrometer (118-320 nm, resolution 1. 5 nm) is identical to the MEX version. It is dedicated to nadir viewing, limb viewing and vertical profiling by stellar and solar occultation. In nadir orientation, SPICAV UV will analyse the albedo spectrum (solar light scattered back from the clouds) to retrieve SO2, and the distribution of the UV-blue absorber (of still unknown origin) on the dayside with implications for cloud structure and atmospheric dynamics. On the nightside, 7 and 6 bands of NO will be studied, as well as emissions produced by electron precipitations. In the stellar occultation mode the UV sensor will measure the vertical profiles of CO2, temperature, SO2, SO, clouds and aerosols. The density/temperature profiles obtained with SPlCAV will constrain and aid in the development of dynamical atmospheric models, from cloud top (similar to 60 km) to 160 km in the atmosphere. This is essential for future missions that would rely on aerocapture and acrobraking. UV observations of the upper atmosphere will allow studies of the ionosphere through the emissions of CO, CO+, and CO2+, and its direct interaction with the solar wind. It will study the H corona, with its two different scale heights, and it will allow a better understanding of escape mechanisms and estimates of their magnitude, crucial for insight into the long-term evolution of the atmosphere. The SPICAV VIS-IR sensor (0.7-1.7 mu m, resolution 0.5-1.2 nm) employs a pioneering technology: an acousto-optical tunable filter (AOTF). On the nightside, it will study the thermal emission peeping through the clouds, complementing the observations of both VIRTIS and Planetary Fourier Spectrometer (PFS) on VEX. In solar occultation mode this channel will study the vertical structure of H2O, CO2, and aerosols. The SOIR spectrometer is a new solar occultation IR spectrometer in the range lambda=2.2-4.3 mu m, with a spectral resolution lambda/Delta lambda > 15,000, the highest on board VEX. This new concept includes a combination of an echelle grating and an AOTF crystal to sort out one order at a time. The main objective is to measure HDO and H2O in solar occultation, in order to characterize the escape of D atoms from the upper atmosphere and give more insight about the evolution of water on Venus. It will also study isotopes of CO2 and minor species, and provides a sensitive search for new species in the upper atmosphere of Venus. It will attempt to measure also the nightside emission, which would allow a sensitive measurement of HDO in the lower atmosphere, to be compared to the ratio in the upper atmosphere, and possibly discover new minor atmospheric constituents. (C) 2007 Elsevier Ltd. All rights reserved. [less ▲]

Detailed reference viewed: 101 (15 ULg)
Full Text
Peer Reviewed
See detailDiagnostic of the dayside ionosphere of Mars using the Total Electron Content measurement by the NEIGE/Netlander experiment
Morel, Laurent; Witasse, Olivier; Warnant, René ULg et al

in Planetary and Space Science (2004), 52

Detailed reference viewed: 17 (4 ULg)
Full Text
Peer Reviewed
See detailThe plasma environment of Mars : from the shocked solar wind down to the ionosphere
Trotignon, J.-G.; Parrot, M.; Cerisier, Jean-Claude et al

in Planetary and Space Science (2000), 48(12-14), 1181-1191

Detailed reference viewed: 16 (4 ULg)
Full Text
Peer Reviewed
See detailA second-order theory for resonance capture in corotation centers
Beauge, C.; Lemaitre, Anne; Jancart, Sylvie ULg

in Planetary and Space Science (1999), 47

In this paper we revisit the analytical determination of the corotation solutions of the restricted planar three-body problem under the effects of a Stokes drag. Previous calculations by different authors ... [more ▼]

In this paper we revisit the analytical determination of the corotation solutions of the restricted planar three-body problem under the effects of a Stokes drag. Previous calculations by different authors, and using different external dissipative forces, have always shown significant quantitative errors of the models with respect to the numerical values. Up to date no concrete explanation has been obtained for this discrepancy. We show that the origin of these errors lies not only in the modelization of the gravitational forces (i.e. disturbing function) but in the averaging process of the variational equations. A second-order averaging is developed based on a Lie transform method ([Kamel, 1969]). With it we can calculate new equilibrium solutions with a greatly improved accuracy. In a second part, this same perturbation method is applied to study the periodic orbits (i.e. limit cycles) which describe the motion of the particles around the averaged corotational solutions. We show how analytical approximations of these cycles can be obtained through the inverse transformation of the averaging process itself. In all cases, we present comparisons with numerical simulations of the exact equations. [less ▲]

Detailed reference viewed: 13 (0 ULg)
Peer Reviewed
See detailThe morphology of the north Jovian ultraviolet aurora observed with the Hubble Space Telescope
Gérard, Jean-Claude ULg; Dols, Vincent; Prange, Renee et al

in Planetary and Space Science (1994), 42

A series of six images covering a complete rotation of the north polar region of Jupiter were obtained in February 1993 with the Faint Object Camera on board the Hubble Space Telescope (HST). These images ... [more ▼]

A series of six images covering a complete rotation of the north polar region of Jupiter were obtained in February 1993 with the Faint Object Camera on board the Hubble Space Telescope (HST). These images provide the first global picture of the morphology of the Jovian ultraviolet aurora observed from Earth orbit. The camera passband was centered near 153 nm, a region dominated by the H2 Lyman bands and continuum. The successive exposures, taken approximately 90 min apart, are used to construct a polar view of the auroral zone. It is found that the auroral emissions do not exactly follow the footprint of a constant L-shell although the size of the oval and its location agree best with the footprints of the approximately equal to 30 R[SUB]J[/SUB] field line in the GSFC O6 model of the Jovian magnetic field. The displacement between the observed auroral zone and the theoretical oval may indicate a possible distortion of the Jovian magnetic field lines near the surface. A comparison with two images at the same wavelength obtained 8 months earlier shows that the main morphological features are persistent, in spite of changes in the detailed emission distribution. Small scale features with characteristic sizes of approximately 1000 km are observed along the auroral oval. The change of morphology observed as a function of the System 3 longitude appears as a persistent characteristic of the morphology of the north polar aurora. [less ▲]

Detailed reference viewed: 7 (3 ULg)