References of "Journal of Geophysical Research. Space Physics"
     in
Bookmark and Share    
Full Text
Peer Reviewed
See detailMultispectral simultaneous diagnosis of Saturn's aurorae throughout a planetary rotation
Lamy, L.; Prangé, R.; Pryor, W. et al

in Journal of Geophysical Research. Space Physics (2013), 118

From 27 to 28 January 2009, the Cassini spacecraft remotely acquired combined observations of Saturn's southern aurorae at radio, ultraviolet, and infrared wavelengths, while monitoring ion injections in ... [more ▼]

From 27 to 28 January 2009, the Cassini spacecraft remotely acquired combined observations of Saturn's southern aurorae at radio, ultraviolet, and infrared wavelengths, while monitoring ion injections in the middle magnetosphere from energetic neutral atoms. Simultaneous measurements included the sampling of a full planetary rotation, a relevant timescale to investigate auroral emissions driven by processes internal to the magnetosphere. In addition, this interval coincidentally matched a powerful substorm-like event in the magnetotail, which induced an overall dawnside intensification of the magnetospheric and auroral activity. We comparatively analyze this unique set of measurements to reach a comprehensive view of kronian auroral processes over the investigated timescale. We identify three source regions for the atmospheric aurorae, including a main oval associated with the bulk of Saturn Kilometric Radiation (SKR), together with polar and equatorward emissions. These observations reveal the coexistence of corotational and subcorototational dynamics of emissions associated with the main auroral oval. Precisely, we show that the atmospheric main oval hosts short-lived subcorotating isolated features together with a bright, longitudinally extended, corotating region locked at the southern SKR phase. We assign the substorm-like event to a regular, internally driven, nightside ion injection possibly triggered by a plasmoid ejection. We also investigate the total auroral energy budget, from the power input to the atmosphere, characterized by precipitating electrons up to 20 keV, to its dissipation through the various radiating processes. Finally, through simulations, we confirm the search-light nature of the SKR rotational modulation and we show that SKR arcs relate to isolated auroral spots. We characterize which radio sources are visible from the spacecraft and we estimate the fraction of visible southern power to a few percent. The resulting findings are discussed in the frame of pending questions as the persistence of a corotating field-aligned current system within a subcorotating magnetospheric cold plasma, the occurrence of plasmoid activity, and the comparison of auroral fluxes radiated at different wavelengths. [less ▲]

Detailed reference viewed: 9 (1 ULg)
Full Text
Peer Reviewed
See detailSignatures of magnetospheric injections in Saturn's aurora
Radioti, Aikaterini ULg; Roussos, E.; Grodent, Denis ULg et al

in Journal of Geophysical Research. Space Physics (2013)

Detailed reference viewed: 14 (9 ULg)
Full Text
Peer Reviewed
See detailCassini UVIS observations of Titan nightglow spectra
Ajello, Joseph M.; West, Robert A.; Gustin, Jacques ULg et al

in Journal of Geophysical Research. Space Physics (2012), 117

In this paper we present the first nightside EUV and FUV airglow limb spectra of Titan showing molecular emissions. The Cassini Ultraviolet Imaging Spectrograph (UVIS) observed photon emissions of Titan's ... [more ▼]

In this paper we present the first nightside EUV and FUV airglow limb spectra of Titan showing molecular emissions. The Cassini Ultraviolet Imaging Spectrograph (UVIS) observed photon emissions of Titan's day and night limb-airglow and disk-airglow on multiple occasions, including during an eclipse observation. The 71 airglow observations analyzed in this paper show EUV (600-1150 Å) and FUV (1150-1900 Å) atomic multiplet lines and band emissions arising from either photoelectron induced fluorescence and solar photo-fragmentation of molecular nitrogen (N[SUB]2[/SUB]) or excitation by magnetosphere plasma. The altitude of the peak UV emissions on the limb during daylight occurred inside the thermosphere at the altitude of the topside ionosphere (near 1000 km altitude). However, at night on the limb, a subset of emission features, much weaker in intensity, arise in the atmosphere with two different geometries. First, there is a twilight photoelectron-excited glow that persists with solar depression angle up to 25-30 degrees past the terminator, until the solar XUV shadow height passes the altitude of the topside ionosphere (1000-1200 km). The UV twilight glow spectrum is similar to the dayglow but weaker in intensity. Second, beyond 120° solar zenith angle, when the upper atmosphere of Titan is in total XUV darkness, there is indication of weak and sporadic nightside UV airglow emissions excited by magnetosphere plasma collisions with ambient thermosphere gas, with similar N[SUB]2[/SUB] excited features as above in the daylight or twilight glow over an extended altitude range. [less ▲]

Detailed reference viewed: 5 (3 ULg)
Full Text
Peer Reviewed
See detailConversion from HST ACS and STIS auroral counts into brightness, precipitated power, and radiated power for H2 giant planets
Gustin, Jacques ULg; Bonfond, Bertrand ULg; Grodent, Denis ULg et al

in Journal of Geophysical Research. Space Physics (2012), 117

The STIS and ACS instruments onboard HST are widely used to study the giant planet's aurora. Several assumptions have to be made to convert the instrumental counts into meaningful physical values (type ... [more ▼]

The STIS and ACS instruments onboard HST are widely used to study the giant planet's aurora. Several assumptions have to be made to convert the instrumental counts into meaningful physical values (type and bandwidth of the filters, definition of the physical units, etc…), but these may significantly differ from one author to another, which makes it difficult to compare the auroral characteristics published in different studies. We present a method to convert the counts obtained in representative ACS and STIS imaging modes/filters used by the auroral scientific community to brightness, precipitated power and radiated power in the ultraviolet (700-1800 Å). Since hydrocarbon absorption may considerably affect the observed auroral emission, the conversion factors are determined for several attenuation levels. Several properties of the auroral emission have been determined: the fraction of the H[SUB]2[/SUB] emission shortward and longward of the HLy-α line is 50.3% and 49.7% respectively, the contribution of HLy-α to the total unabsorbed auroral signal has been set to 9.1% and an input of 1 mW m[SUP]-2[/SUP] produces 10 kR of H[SUB]2[/SUB] in the Lyman and Werner bands. A first application sets the order of magnitude of Saturn's auroral characteristics in the total UV bandwidth to a brightness of 10 kR and an emitted power of ˜2.8 GW. A second application uses published brightnesses of Europa's footprint to determine the current density associated with the Europa auroral spot: 0.21 and 0.045 μA m[SUP]-2[/SUP] assuming no hydrocarbon absorption and a color ratio of 2, respectively. Factors to extend the brightnesses observed with Cassini-UVIS to total H[SUB]2[/SUB] UV brightnesses are also provided. [less ▲]

Detailed reference viewed: 21 (3 ULg)
Full Text
Peer Reviewed
See detailThe production of Titan's ultraviolet nitrogen airglow
Stevens, Michael H; Gustin, Jacques ULg; Ajello, Joseph M et al

in Journal of Geophysical Research. Space Physics (2011), 116

The Cassini Ultraviolet Imaging Spectrograph (UVIS) observed Titan's dayside limb in the extreme ultraviolet (EUV) and far ultraviolet (FUV) on 22 June 2009 from a mean distance of 23 Titan radii. These ... [more ▼]

The Cassini Ultraviolet Imaging Spectrograph (UVIS) observed Titan's dayside limb in the extreme ultraviolet (EUV) and far ultraviolet (FUV) on 22 June 2009 from a mean distance of 23 Titan radii. These high-quality observations reveal the same EUV and FUV emissions arising from photoelectron excitation and photofragmentation of molecular nitrogen (N[SUB]2[/SUB]) as found on Earth. We investigate both of these solar driven processes with a terrestrial airglow model adapted to Titan and find that total predicted radiances for the two brightest N[SUB]2[/SUB] band systems agree with the observed peak radiances to within 5%. Using N[SUB]2[/SUB] densities constrained from in situ observations by the Ion Neutral Mass Spectrometer on Cassini, the altitude of the observed limb peak of the EUV and FUV emission bands is between 840 and 1060 km and generally consistent with model predictions. We find no evidence for carbon emissions in Titan's FUV airglow in contrast to previous Titan airglow studies using UVIS data. In their place, we identify several vibrational bands from the N[SUB]2[/SUB] Vegard-Kaplan system arising from photoelectron impact with predicted peak radiances in agreement with observations. These Titan UV airglow observations are therefore comprised of emissions arising only from solar processes on N[SUB]2[/SUB] with no detectable magnetospheric contribution. Weaker EUV Carroll-Yoshino N[SUB]2[/SUB] bands within the v′ = 3, 4, and 6 progressions between 870 and 1020 Å are underpredicted by about a factor of five while the (0,1) band near 980 Å is overpredicted by about a factor of three. [less ▲]

Detailed reference viewed: 11 (2 ULg)
Full Text
Peer Reviewed
See detailImproved mapping of Jupiter’s auroral features to magnetospheric sources
Vogt, Marissa. F.; Kivelson, Margaret. G.; Khurana, Krishan. K. et al

in Journal of Geophysical Research. Space Physics (2011), 116

The magnetospheric mapping of Jupiter's polar auroral emissions is highly uncertain because global Jovian field models are known to be inaccurate beyond ∼30 RJ. Furthermore, the boundary between open and ... [more ▼]

The magnetospheric mapping of Jupiter's polar auroral emissions is highly uncertain because global Jovian field models are known to be inaccurate beyond ∼30 RJ. Furthermore, the boundary between open and closed flux in the ionosphere is not well defined because, unlike the Earth, the main auroral oval emissions at Jupiter are likely associated with the breakdown of plasma corotation and not the open/closed flux boundary in the polar cap. We have mapped contours of constant radial distance from the magnetic equator to the ionosphere in order to understand how auroral features relate to magnetospheric sources. Instead of following model field lines, we map equatorial regions to the ionosphere by requiring that the magnetic flux in some specified region at the equator equals the magnetic flux in the area to which it maps in the ionosphere. Equating the fluxes in this way allows us to link a given position in the magnetosphere to a position in the ionosphere. We find that the polar auroral active region maps to field lines beyond the dayside magnetopause that can be interpreted as Jupiter's polar cusp; the swirl region maps to lobe field lines on the night side and can be interpreted as Jupiter's polar cap; the dark region spans both open and closed field lines and must be explained by multiple processes. Additionally, we conclude that the flux through most of the area inside the main oval matches the magnetic flux contained in the magnetotail lobes and is probably open to the solar wind. [less ▲]

Detailed reference viewed: 26 (12 ULg)
Full Text
Peer Reviewed
See detailA superposed epoch investigation of the relation between magnetospheric solar wind driving and substorm dynamics with geosynchronous particle injection signatures
Boakes, P. D.; Milan, S. E.; Abel, G. A. et al

in Journal of Geophysical Research. Space Physics (2011), 116

We report a superposed epoch analysis of the hemispheric open magnetic flux, maximum nightside auroral intensity, geomagnetic activity, and solar wind and interplanetary magnetic field conditions around ... [more ▼]

We report a superposed epoch analysis of the hemispheric open magnetic flux, maximum nightside auroral intensity, geomagnetic activity, and solar wind and interplanetary magnetic field conditions around the time of substorm onset for three distinct categories of substorms defined by their energetic particle injection signatures. Substorms identified from global auroral imagery are classified into one of three categories based on their energetic particle injection signatures as seen at geosynchronous orbit by the Los Alamos National Laboratory spacecraft. Category 1 events are associated with a “classic” substorm injection, category 2 events show varied activity (i.e., energetic enhancements not following the evolution expected for classic substorms), and category 3 events show no apparent injection activity. The superposed epoch analysis reveals that the three distinct particle injection categories exhibit distinct differences in the level and continuity of magnetospheric driving by the solar wind, such that category 1 events can be described as classic substorm events, category 2 as continuously driven events, and category 3 as weak events. The results of this study suggest that the level and continuity of the dayside solar wind driving of the magnetosphere during substorms have a direct impact on the injection of energetic particles to geosynchronous orbit at substorm onset. These results could have considerable value in empirical predictions of the space weather environment. [less ▲]

Detailed reference viewed: 11 (1 ULg)
Full Text
Peer Reviewed
See detailSmall-scale structures in Saturn's ultraviolet aurora
Grodent, Denis ULg; Gustin, Jacques ULg; Gérard, Jean-Claude ULg et al

in Journal of Geophysical Research. Space Physics (2011), 116

On 26 August 2008, the Ultraviolet Imaging Spectrograph Subsystem (UVIS) instrument onboard the Cassini spacecraft recorded a series of spatially resolved spectra of the northern auroral region of Saturn ... [more ▼]

On 26 August 2008, the Ultraviolet Imaging Spectrograph Subsystem (UVIS) instrument onboard the Cassini spacecraft recorded a series of spatially resolved spectra of the northern auroral region of Saturn. Near periapsis, the spacecraft was only five Saturn radii (R[SUB]S[/SUB]) from the surface and spatially resolved auroral structures as small as 500 km across (0.5° of latitude). We report the observation of two types of UV auroral substructures at the location of the main ring of emission, bunches of spots and narrow arcs. They are found in the noon and dusk sectors, respectively, at latitudes ranging from 73 to 80° corresponding to equatorial regions located beyond 16 R[SUB]S[/SUB]. Their brightness ranges from 1 to 30 kR and their characteristic size varies from 500 km to several thousands of km. These small-scale substructures are likely associated with patterns of upward field aligned currents resulting from nonuniform plasma flow in the equatorial plane. It is suggested that magnetopause Kelvin-Helmholtz waves trigger localized perturbations in the flow, like vortices, able to give rise to the observed UV auroral substructures. [less ▲]

Detailed reference viewed: 22 (7 ULg)
Full Text
Peer Reviewed
See detailNightside reconnection at Jupiter: Auroral and magnetic field observations from 26 July 1998
Radioti, Aikaterini ULg; Grodent, Denis ULg; Gérard, Jean-Claude ULg et al

in Journal of Geophysical Research. Space Physics (2011), 116

In this study we present ultraviolet and infrared auroral data from 26 July 1998, and we show the presence of transient auroral polar spots observed throughout the postdusk to predawn local time sector ... [more ▼]

In this study we present ultraviolet and infrared auroral data from 26 July 1998, and we show the presence of transient auroral polar spots observed throughout the postdusk to predawn local time sector. The polar dawn spots, which are transient polar features observed in the dawn sector poleward of the main emission, were previously associated with the inward moving flow resulting from tail reconnection. In the present study we suggest that nightside spots, which are polar features observed close to the midnight sector, are related to inward moving flow, like the polar dawn spots. We base our conclusions on the near-simultaneous set of Hubble Space Telescope (HST) and Galileo observations of 26 July 1998, during which HST observed a nightside spot magnetically mapped close to the location of an inward moving flow detected by Galileo on the same day. We derive the emitted power from magnetic field measurements along the observed plasma flow bubble, and we show that it matches the emitted power inferred from HST. Additionally, this study reports for the first time a bright polar spot in the infrared, which could be a possible signature of tail reconnection. The spot appears within an interval of 30 min from the ultraviolet, poleward of the main emission on the ionosphere and in the postdusk sector planetward of the tail reconnection x line on the equatorial plane. Finally, the present work demonstrates that ionospheric signatures of flow bursts released during tail reconnection are instantaneously detected over a wide local time sector. [less ▲]

Detailed reference viewed: 6 (2 ULg)
Full Text
Peer Reviewed
See detailBifurcations of the main auroral ring at Saturn: ionospheric signatures of consecutive reconnection events at the magnetopause
Radioti, Aikaterini ULg; Grodent, Denis ULg; Gérard, Jean-Claude ULg et al

in Journal of Geophysical Research. Space Physics (2011), 116

This work reports for the first time on bifurcations of the main auroral ring at Saturn observed with the UVIS instrument onboard Cassini. The observation sequence starts with an intensification on the ... [more ▼]

This work reports for the first time on bifurcations of the main auroral ring at Saturn observed with the UVIS instrument onboard Cassini. The observation sequence starts with an intensification on the main oval, close to noon, which is possibly associated with dayside reconnection. Consecutive bifurcations appear with the onset of dayside reconnection, between 11 and 18 magnetic local time, while the area poleward of the main emission expands to lower latitudes. The bifurcations depart with time from the main ring of emission, which is related to the open-closed field line boundary. The augmentation of the area poleward of the main emission following its expansion is balanced by the area occupied by the bifurcations, suggesting that these auroral features represent the amount of newly open flux and could be related to consecutive reconnection events at the flank of the magnetopause. The observations show that the open flux along the sequence increases when bifurcations appear. Magnetopause reconnection can lead to significant augmentation of the open flux within a couple of days and each reconnection event opens ∼10% of the flux contained within the polar cap. Additionally, the observations imply an overall length of the reconnection line of ∼4 hours of local time and suggest that dayside reconnection at Saturn can occur at several positions on the magnetopause consecutively or simultaneously. [less ▲]

Detailed reference viewed: 19 (5 ULg)
Full Text
Peer Reviewed
See detailModel of the Jovian magnetic field topology constrained by the Io auroral emissions
Hess, S. L. G.; Bonfond, Bertrand ULg; Zarka, P. et al

in Journal of Geophysical Research. Space Physics (2011), 116

The determination of the internal magnetic field of Jupiter has been the object of many studies and publications. These models have been computed from the Pioneer, Voyager, and Ulysses measurements. Some ... [more ▼]

The determination of the internal magnetic field of Jupiter has been the object of many studies and publications. These models have been computed from the Pioneer, Voyager, and Ulysses measurements. Some models also use the position of the Io footprints as a constraint: the magnetic field lines mapping to the footprints must have their origins along Io's orbit. The use of this latter constraint to determine the internal magnetic field models greatly improved the modeling of the auroral emissions, in particular the radio ones, which strongly depends on the magnetic field geometry. This constraint is, however, not sufficient for allowing a completely accurate modeling. The fact that the footprint field line should map to a longitude close to Io's was not used, so that the azimuthal component of the magnetic field could not be precisely constrained. Moreover, a recent study showed the presence of a magnetic anomaly in the northern hemisphere, which has never been included in any spherical harmonic decomposition of the internal magnetic field. We compute a decomposition of the Jovian internal magnetic field into spherical harmonics, which allows for a more accurate mapping of the magnetic field lines crossing Io, Europa, and Ganymede orbits to the satellite footprints observed in UV. This model, named VIPAL, is mostly constrained by the Io footprint positions, including the longitudinal constraint, and normalized by the Voyager and Pioneer magnetic field measurements. We show that the surface magnetic fields predicted by our model are more consistent with the observed frequencies of the Jovian radio emissions than those predicted by previous models. [less ▲]

Detailed reference viewed: 13 (2 ULg)
Full Text
Peer Reviewed
See detailA superposed epoch analysis of auroral evolution during substorms: Local time of onset region
Milan, S. E.; Grocott, A.; Hubert, Benoît ULg

in Journal of Geophysical Research. Space Physics (2010), 115

Previous workers have shown that the magnetic local time (MLT) of substorm onset depends on the prevailing east-west component of the interplanetary magnetic field (IMF). To investigate the influence of ... [more ▼]

Previous workers have shown that the magnetic local time (MLT) of substorm onset depends on the prevailing east-west component of the interplanetary magnetic field (IMF). To investigate the influence of the onset MLT on the subsequent auroral response we perform a superposed epoch analysis of the auroral evolution during approximately 2000 substorms using observations from the FUV instrument on the Imager for Magnetopause-to-Aurora Global Exploration (IMAGE) spacecraft. We subdivide the substorms by onset latitude and onset local time before determining average auroral images before and after substorm onset, for both electron and proton aurorae. We find that during the growth phase there is preexisting auroral emission in the MLT sector of the subsequent onset. After onset the auroral bulge expands eastward and westward, but remains centered on the onset sector. Approximately 30 min after onset, during the substorm recovery phase, the peaks in electron and proton auroral emission move into the postnoon and prenoon sectors, respectively, reflecting the “average” auroral precipitation patterns determined by previous studies. Superposed epoch analysis of the interplanetary magnetic field for the substorms under study suggests that the B[SUB]Y[/SUB] component of the IMF must be biased toward positive or negative values for up to a day prior to onset for the onset MLT to be influenced. [less ▲]

Detailed reference viewed: 6 (0 ULg)
Full Text
Peer Reviewed
See detailPower transmission and particle acceleration along the Io flux tube
Hess, Sebastien L G; Delamere, Peter; Dols, Vincent et al

in Journal of Geophysical Research. Space Physics (2010), 115

Io's motion relative to the Jovian magnetic field generates a power of about 10^12 W, which is thought to propagate as an Alfven wave along the magnetic field line. This power is transmitted to the ... [more ▼]

Io's motion relative to the Jovian magnetic field generates a power of about 10^12 W, which is thought to propagate as an Alfven wave along the magnetic field line. This power is transmitted to the electrons, which will then precipitate and generate the observed auroral phenomena from UV to radio wavelengths. A more detailed look at this hypothesis shows some difficulties: Can the Alfven waves escape the torus or are they trapped inside? Where and how are the particles accelerated? In which direction? Is there enough power transmitted to the particles to explain the strong brightness of the auroral emissions in UV, IR, visible, and radio? In other words, can we make a global, consistent model of the Io-Jupiter interaction that matches all the observations? To answer these questions, we review the models and studies that have been proposed so far. We show that the Alfven waves need to be filamented by a turbulent cascade process and accelerate the electrons at high latitude in order to explain the observations and to form a consistent scheme of the Io-Jupiter interaction. [less ▲]

Detailed reference viewed: 12 (0 ULg)
Full Text
Peer Reviewed
See detailThe 3-D extent of the Io UV footprint on Jupiter
Bonfond, Bertrand ULg

in Journal of Geophysical Research. Space Physics (2010), 115

The Io footprint (IFP) is the auroral signature of the electromagnetic interaction between Io and Jupiter's magnetosphere. It consists of several spots followed by an extended tail, which are located ... [more ▼]

The Io footprint (IFP) is the auroral signature of the electromagnetic interaction between Io and Jupiter's magnetosphere. It consists of several spots followed by an extended tail, which are located close to the feet of the magnetic field lines connecting Io to Jupiter. The size of the main spot is a controversial issue, and previously published values range from ~400 to ~8000 km. However, this question is crucial to understand the processes at play, since this quantity is expected to reflect the size of the interaction region at Io. The present study provides estimates of the size of the Io footprint on a much larger image sample than before, paying a particular attention to the differentiation of the spots and to their 3-D structure. The length of the Main Alfven Wing (MAW) spot and the length of the trans-hemispheric electron beam (TEB) spot along the footpath are similar to 850 km, while their width perpendicular to the footpath is < 200 km. Larger lengths are sometimes observed, but these configurations may be attributed to the overlaps of the different spots. The spot lengths are larger than the projected diameter of Io along unperturbed magnetic field lines, which is consistent with recent simulations. The narrowness of the IFP will need to be carefully accounted for in future studies of its brightness. Additionally, the peak altitudes of the MAW and the TEB spot are as high as 900 and 700 km, respectively, which seem to confirm their different origins. [less ▲]

Detailed reference viewed: 6 (0 ULg)
Full Text
Peer Reviewed
See detailAuroral signatures of flow bursts released during magnetotail reconnection at Jupiter
Radioti, Aikaterini ULg; Grodent, Denis ULg; Gérard, Jean-Claude ULg et al

in Journal of Geophysical Research. Space Physics (2010), 115

Recent studies based on Hubble Space Telescope (HST) data reported the presence of transient polar dawn spots in the Jovian auroral region and interpreted them as signatures of internally driven magnetic ... [more ▼]

Recent studies based on Hubble Space Telescope (HST) data reported the presence of transient polar dawn spots in the Jovian auroral region and interpreted them as signatures of internally driven magnetic reconnection in the Jovian magnetotail. Even though an association of the polar dawn spots with the reconnection process has been suggested, it has not been yet investigated which part of the process and what mechanism powers these auroral emissions. In the present study, we examine the scenario that the auroral spots are triggered by the inward moving flow bursts released during magnetic reconnection at Jupiter. We base our analysis on a model adapted from the terrestrial case, according to which moving plasma flow burst is coupled with the ionosphere by field-aligned currents, giving rise to auroral emissions. We estimate the upward field-aligned current at the flank of the flow bursts, using in-situ magnetic field measurements and we derive the auroral emitted power. We statistically study the observed emitted power of the polar dawn spots, based on HST data from 1998 to 2007, and we compare it with the emitted power derived according to the proposed scenario. Apart from the emitted power, other properties of the polar dawn spots such as their location, periodicity, duty cycle and multiplicity suggest that they are associated with the inward moving flow bursts released during magnetic reconnection in Jupiter's tail. [less ▲]

Detailed reference viewed: 23 (3 ULg)
Full Text
Peer Reviewed
See detailOn the origin of Saturn's outer auroral emission
Grodent, Denis ULg; Radioti, Aikaterini ULg; Bonfond, Bertrand ULg et al

in Journal of Geophysical Research. Space Physics (2010), 115

Ultraviolet Hubble Space Telescope images reveal a faint but distinct auroral emission equatorward of the main ring of emission of Saturn's southern polar region. This outer auroral emission is only ... [more ▼]

Ultraviolet Hubble Space Telescope images reveal a faint but distinct auroral emission equatorward of the main ring of emission of Saturn's southern polar region. This outer auroral emission is only visible near the nightside limb for the strongly tilted viewing geometry achieved in January 2004. We model the limb-brightening amplification of this emission, and we show that the observations are compatible with an ∼7° wide emission ring approximately centered on the 67°S parallel. The 1.7 kR brightness of this emission requires an injected electron energy flux of ∼0.3 mW m[SUP]‑2[/SUP]. The outer auroral emission maps to a region of the equatorial plane between 4 and 11 R[SUB]S[/SUB]. We suggest that a population of suprathermal electrons observed by Cassini can provide more than the required energy flux without the need for field-aligned acceleration. This auroral UV emission may also be associated with energetic neutral oxygen and hydrogen atoms originating from the energetic protons and O[SUP]+[/SUP] of magnetosphere and/or with a secondary infrared auroral oval. [less ▲]

Detailed reference viewed: 26 (9 ULg)
Full Text
Peer Reviewed
See detailThe auroral footprint of Ganymede
Grodent, Denis ULg; Bonfond, Bertrand ULg; Radioti, Aikaterini ULg et al

in Journal of Geophysical Research. Space Physics (2009), 114(A07212),

The interaction of Ganymede with Jupiter's fast rotating magnetospheric plasma gives rise to a current system producing an auroral footprint in Jupiter's ionosphere, usually referred to as the Ganymede ... [more ▼]

The interaction of Ganymede with Jupiter's fast rotating magnetospheric plasma gives rise to a current system producing an auroral footprint in Jupiter's ionosphere, usually referred to as the Ganymede footprint. Based on an analysis of ultraviolet images obtained with the Hubble Space Telescope we demonstrate that the auroral footprint surface matches a circular region in Ganymede's orbital plane having a diameter of 8 to 20 RG. Temporal analysis of the auroral power of Ganymede's footprint reveals variations of different timescales: 1) a 5 hours timescale associated with the periodic flapping of Jupiter's plasma sheet over Ganymede, 2) a 10 to 40 minutes timescale possibly associated with energetic magnetospheric events, such as plasma injections, and 3) a 100 s timescale corresponding to quasi-periodic fluctuations which might relate to bursty reconnections on Ganymede's magnetopause and/or to the recurrent presence of acceleration structures above Jupiter's atmosphere. These three temporal components produce an auroral power emitted at Ganymede's footprint of the order of ~0.2 GW to ~1.5 GW. [less ▲]

Detailed reference viewed: 78 (50 ULg)
Full Text
Peer Reviewed
See detailStatistical properties of flux closure induced by solar wind dynamic pressure fronts
Hubert, Benoît ULg; Blockx, Caroline ULg; Milan, S. E. et al

in Journal of Geophysical Research. Space Physics (2009), 114

We present a statistical study of flux closure intervals induced by solar wind dynamic pressure fronts. We consider that a dynamic pressure front reaches the Earth when a dayside subauroral proton flash ... [more ▼]

We present a statistical study of flux closure intervals induced by solar wind dynamic pressure fronts. We consider that a dynamic pressure front reaches the Earth when a dayside subauroral proton flash is observed in the SI2 channel of the IMAGE-FUV experiment. This pragmatic criterion selects both weak and strong pressure fronts. It is found that the preconditioning of the magnetosphere prior to the pressure pulse arrival mainly governs the magnetospheric response to a weak solar wind dynamic pressure front. This preconditioning includes the amount of open magnetic flux available in the magnetosphere prior to the pressure front arrival and the size of the magnetospheric cavity. However, in the case of a strong pressure pulse, the magnetospheric response is more sensitive to the solar wind properties characterizing the dynamic pressure front. The pressure jump is not the only one important, but also the variation of the solar wind velocity and IMF magnitude. In overall terms, we find that a strong dynamic pressure front is typically characterized by a dynamic pressure increase larger than Ë 2.8 nPa that takes place on timescales of the order of a few minutes. [less ▲]

Detailed reference viewed: 22 (3 ULg)
Full Text
Peer Reviewed
See detailThe Io UV footprint: Location, inter-spot distances and tail vertical extent
Bonfond, Bertrand ULg; Grodent, Denis ULg; Gérard, Jean-Claude ULg et al

in Journal of Geophysical Research. Space Physics (2009), 114

The Io footprint (IFP) consists of one or several spots observed in both jovian hemispheres and is related to the electromagnetic interaction between Io and the magnetosphere. These spots are followed by ... [more ▼]

The Io footprint (IFP) consists of one or several spots observed in both jovian hemispheres and is related to the electromagnetic interaction between Io and the magnetosphere. These spots are followed by an auroral curtain, called the tail, extending more than 90° longitude in the direction of planetary rotation. We use recent Hubble Space Telescope images of Jupiter to analyze the location of the footprint spots and tail as a function of Io's location in the jovian magnetic field. We present here a new IFP reference contour---the locus of all possible IFP positions---with an unprecedented accuracy, especially in previously poorly covered sectors. We also demonstrate that the lead angle - the longitudinal shift between Io and the actual IFP position - is not a reliable quantity for validation of the interaction models. Instead, the evolution of the inter-spot distances appears to be a better diagnosis of the Io-Jupiter interaction. Moreover, we present observations of the tail vertical profiles as seen above the limb. The emission peak altitude is ~900 km and remains relatively constant with the distance from the main spot. The altitudinal extent of the vertical emission profiles is not compatible with precipitation of a mono-energetic electron population. The best fit is obtained for a kappa distribution with a characteristic energy of ~70 eV and a spectral index of 2.3. The broadness of the inferred electron energy spectrum gives insight into the physics of the electron acceleration mechanism at play above the IFP tail. [less ▲]

Detailed reference viewed: 56 (17 ULg)