References of "Journal of Biomaterials Science. Polymer Edition"
     in
Bookmark and Share    
Full Text
Peer Reviewed
See detailImprovement of the Detection of Neurodegenerative Alzheimer's Disease through a Specific Surface Chemistry Applied onto the Inner Surface of the Titration Well.
Mille, Caroline; Debarnot, Dominique; Zorzi, Willy ULg et al

in Journal of Biomaterials Science. Polymer Edition (2011)

Detailed reference viewed: 15 (3 ULg)
Full Text
Peer Reviewed
See detailStudy of the Adhesion of Neurodegenerative Proteins on Plasma-Modified and Coated Polypropylene Surfaces.
Poncin-Epaillard, Fabienne; Mille, Caroline; Debarnot et al

in Journal of Biomaterials Science. Polymer Edition (2011)

Detailed reference viewed: 33 (3 ULg)
Full Text
Peer Reviewed
See detailHydrogel nanocomposites: a potential UV/blue light filtering material for ophthalmic lenses
Bozukova, Dimitriya; Pagnoulle, Christophe; De Pauw, Marie-Claire ULg et al

in Journal of Biomaterials Science. Polymer Edition (2011), 22

Poly(2-hydroxyethyl methacrylate-co-methyl methacrylate) (poly(HEMA-co-MMA)) and ZnS hydrogel nanocomposites were prepared and characterized. The chemical composition of the inorganic nanoparticles was ... [more ▼]

Poly(2-hydroxyethyl methacrylate-co-methyl methacrylate) (poly(HEMA-co-MMA)) and ZnS hydrogel nanocomposites were prepared and characterized. The chemical composition of the inorganic nanoparticles was confirmed by X-ray diffraction, and the homogeneity of their distribution within the hydrogel was assessed by transmission electron microscopy. The influence of the content of ZnS nanoparticles on the optical performances of the nanocomposites was investigated by UV-Vis spectroscopy. The ability of the hydrogel nanocomposites to filter the hazardous UV light and part of the blue light was reported, which makes them valuable candidates for ophthalmic lens application. In contrast to the optical properties, the thermo-mechanical properties of neat poly(HEMA-co-MMA) hydrogels were found to be largely independent of filling by ZnS nanoparticles ( 2 mg/ml co-monomer mixture). Finally, in vitro cell adhesion test with lens epithelial cells (LECs), extracted from porcine lens crystalline capsule, showed that ZnS had no deleterious effect on the biocompatibility of neat hydrogels, at least at low content. [less ▲]

Detailed reference viewed: 83 (21 ULg)
Full Text
Peer Reviewed
See detailAmphiphilic copolymers of epsilon-caprolactone and gamma-substituted epsilon-caprolactone. Synthesis and functionalization of poly(D,L-lactide) nanoparticles
Gautier, Sandrine; D'Aloia, Violetta; Halleux, Olivier et al

in Journal of Biomaterials Science. Polymer Edition (2003), 14(1), 63-85

Fully biodegradable and surface-functionalized poly(D,L-lactide) (PLA) nanoparticles have been prepared by a co-precipitation technique. Novel amphiphilic random copolyesters P(CL-co-gamma XCL) were ... [more ▼]

Fully biodegradable and surface-functionalized poly(D,L-lactide) (PLA) nanoparticles have been prepared by a co-precipitation technique. Novel amphiphilic random copolyesters P(CL-co-gamma XCL) were synthesized by controlled copolymerization of epsilon-caprolactone and epsilon-caprolactone substituted in the gamma-position by a hydrophilic X group, where X is either a cationic pyridinium (gamma-Py-CL) or a non-ionic hydroxyl (gamma-OH-CL). Nanoparticles were prepared by co-precipitation of PLA with the P(CL-co-gamma-XCL) copolyester from a DMSO solution. Small amounts of cationic P(CL-co-gamma-Py-CL) copolymers are needed to quantitatively form stable nanoparticles (ca. 10 mg/100 mg PLA), although larger amounts of non-ionic P(CL-co-gamma-OH-CL) copolymers are needed (ges12.5 mg/100 mg PLA). Copolymers with a low degree of polymerization (ca. 40) are more efficient stabilizers, probably because of faster migration towards the nanoparticle-water interface. The nanoparticle diameter decreases with the polymer concentration in DMSO, e.g. from ca. 160 nm (16 mg/ml) to ca. 100 nm (2 mg/ml) for PLA/P(CL-co-gamma-Py-CL) nanoparticles. Migration of the P(CL-co-gamma-XCL) copolyesters to the nanoparticle surface was confirmed by measurement of the zeta potential, i.e. ca. +65 mV for P(CL-co-gamma-Py-CL) and -7 mV for P(CL-co-gamma-OH-CL). The polyamphiphilic copolyesters stabilize PLA nanoparticles by electrostatic or steric repulsions, depending on whether they are charged or not. They also impart functionality and reactivity to the surface, which opens up new opportunities for labelling and targeting purposes. [less ▲]

Detailed reference viewed: 44 (4 ULg)
Full Text
Peer Reviewed
See detailProtein adsorption on preadsorbed polyampholytic monolayers
Mahltig, Boris; Werner, Carsten; Müller, Martin et al

in Journal of Biomaterials Science. Polymer Edition (2001), 12(9), 995-1010

The adsorption behaviour of five different globular proteins on pure silicon substrates and on preadsorbed polyampholytic monolayers has been investigated as a function of protein concentration. The ... [more ▼]

The adsorption behaviour of five different globular proteins on pure silicon substrates and on preadsorbed polyampholytic monolayers has been investigated as a function of protein concentration. The prelayers were prepared by adsorption of the ampholytic diblock copolymer poly(methacrylic acid)-block-poly ((dimethylamino)ethyl methacrylate) (PMAA-b-PDMAEMA). This polyampholyte adsorbs in densely packed micelles directly from aqueous solution. Ellipsometry was used to determine the amount of adsorbed polyampholyte and protein. While ATR-IR spectroscopy gives information about the adsorption and desorption behaviour of the preadsorbed polyampholytic layer, the lateral structures of the dried films were investigated by scanning force microscopy (SFM). The amount of protein adsorbed was found to be strongly influenced by the preadsorbed polyampholyte compared to the adsorption on the pure silicon substrates. No displacement of the polyampholyte by the proteins was detected. In most cases the protein adsorption was reduced by the preadsorbed polyampholytic layer. The observed trends are explained by the change in electrostatic and hydrophilic characteristics of the substrates. Furthermore, the entropy of adsorption has to be taken into account. [less ▲]

Detailed reference viewed: 25 (2 ULg)
Full Text
Peer Reviewed
See detailPreparation of poly(D,L-lactide) nanoparticles assisted by amphiphilic poly(methyl methacrylate-co-methacrylic acid) copolymers
Gautier, Sandrine; Grudzielski, Nathalie; Goffinet, Gerhard ULg et al

in Journal of Biomaterials Science. Polymer Edition (2001), 12(4), 429-450

When co-precipitated with amphiphilic copolymers from DMSO, poly(D,L-lactide) (PLA) can be readily converted into stable sub-200 nm nanoparticles by addition of an aqueous phase, free of any polymeric ... [more ▼]

When co-precipitated with amphiphilic copolymers from DMSO, poly(D,L-lactide) (PLA) can be readily converted into stable sub-200 nm nanoparticles by addition of an aqueous phase, free of any polymeric stabilizers such as poly(vinyl alcohol) or Poloxamer. In this work, the ability of random poly(methyl methacrylate-co-methacrylic acid) copolymers (PMMA-co-MA) to stabilize PLA nanoparticles was demonstrated, and the properties of PLA/PMMA-co-MA nanoparticles were investigated. When co-precipitated with PMMA-co-MA, PLA was totally converted into nanoparticles using a polymer concentration in DMSO (Cp) below 17.6 mg ml(-1), and a PMMA-co-MA proportion above a critical value depending on the content of MA repeating units (X). For instance, the lowest PMMA-co-MA proportion required was 0.9 mg mg(-1) PLA for X = 12%, and 0.5 mg mg(-1) PLA for X = 25% (for C(PLA) = 16 mg ml(-1) DMSO). The nanoparticle diameter was essentially independent of X, the proportion of PMMA-co-MA, and the PLA molecular weight, except for oligomers for which the nanoparticle diameter was smaller. It decreased when the organic phase was diluted (126 +/- 13 nm for Cp = 17.6 mg ml(-1), and 81 +/- 5 nm for C(P) = 5.6 mg ml(-1)). The time-dependence of the stability and the degradation of PLA/PMMA-co-MA nanoparticles was discussed. One of the main advantages of this technique is the ability to control surface properties and to bring functional groups to otherwise non-functionalized PLA nanoparticles. To illustrate this, a conjugate of PMMA-co-MA25 and biotin was synthesized, and used to prepare biotinylated nanoparticles that could be detected by fluorescence and transmission electron microscopy after infiltration into ligatured rat small intestine. [less ▲]

Detailed reference viewed: 49 (6 ULg)