References of "Journal of Bacteriology"
     in
Bookmark and Share    
Full Text
Peer Reviewed
See detailRegulon of the N-acetylglucosamine utilization regulator NagR in Bacillus subtilis
Bertram, R.; Rigali, Sébastien ULg; Wood, N. et al

in Journal of Bacteriology (2011), 193(14), 3525-36

Detailed reference viewed: 20 (4 ULg)
Full Text
Peer Reviewed
See detailMonofunctional transglycosylases are not essential for Staphylococcus aureus cell wall synthesis.
Reed, Patricia; Veiga, Helena; Jorge, Ana M et al

in Journal of Bacteriology (2011), 193(10), 2549-56

The polymerization of peptidoglycan is the result of two types of enzymatic activities: transglycosylation, the formation of linear glycan chains, and transpeptidation, the formation of peptide cross ... [more ▼]

The polymerization of peptidoglycan is the result of two types of enzymatic activities: transglycosylation, the formation of linear glycan chains, and transpeptidation, the formation of peptide cross-bridges between the glycan strands. Staphylococcus aureus has four penicillin binding proteins (PBP1 to PBP4) with transpeptidation activity, one of which, PBP2, is a bifunctional enzyme that is also capable of catalyzing transglycosylation reactions. Additionally, two monofunctional transglycosylases have been reported in S. aureus: MGT, which has been shown to have in vitro transglycosylase activity, and a second putative transglycosylase, SgtA, identified only by sequence analysis. We have now shown that purified SgtA has in vitro transglycosylase activity and that both MGT and SgtA are not essential in S. aureus. However, in the absence of PBP2 transglycosylase activity, MGT but not SgtA becomes essential for cell viability. This indicates that S. aureus cells require one transglycosylase for survival, either PBP2 or MGT, both of which can act as the sole synthetic transglycosylase for cell wall synthesis. We have also shown that both MGT and SgtA interact with PBP2 and other enzymes involved in cell wall synthesis in a bacterial two-hybrid assay, suggesting that these enzymes may work in collaboration as part of a larger, as-yet-uncharacterized cell wall-synthetic complex. [less ▲]

Detailed reference viewed: 25 (18 ULg)
Full Text
Peer Reviewed
See detailGenome Sequence of the Edible Cyanobacterium Arthrospira sp. PCC 8005
Janssen, Paul; Morin, Nicolas; Mergeay, Max et al

in Journal of Bacteriology (2010), 192(9), 24652466

We determined the genome sequence of Arthrospira sp. PCC 8005, a cyanobacterial strain of great interest to the European Space Agency for its nutritive value and oxygenic properties in the Micro ... [more ▼]

We determined the genome sequence of Arthrospira sp. PCC 8005, a cyanobacterial strain of great interest to the European Space Agency for its nutritive value and oxygenic properties in the Micro-Ecological Life Support System Alternative (MELiSSA) biological life support system for long-term manned missions into space. [less ▲]

Detailed reference viewed: 66 (6 ULg)
Full Text
Peer Reviewed
See detailDiversity of monomers in nonribosomal peptides: towards the prediction of origin and biological activity.
Caboche, Segolene; Leclere, Valerie; Pupin, Maude et al

in Journal of bacteriology (2010), 192(19), 5143-50

Nonribosomal peptides (NRPs) are molecules produced by microorganisms that have a broad spectrum of biological activities and pharmaceutical applications (e.g., antibiotic, immunomodulating, and antitumor ... [more ▼]

Nonribosomal peptides (NRPs) are molecules produced by microorganisms that have a broad spectrum of biological activities and pharmaceutical applications (e.g., antibiotic, immunomodulating, and antitumor activities). One particularity of the NRPs is the biodiversity of their monomers, extending far beyond the 20 proteogenic amino acid residues. Norine, a comprehensive database of NRPs, allowed us to review for the first time the main characteristics of the NRPs and especially their monomer biodiversity. Our analysis highlighted a significant similarity relationship between NRPs synthesized by bacteria and those isolated from metazoa, especially from sponges, supporting the hypothesis that some NRPs isolated from sponges are actually synthesized by symbiotic bacteria rather than by the sponges themselves. A comparison of peptide monomeric compositions as a function of biological activity showed that some monomers are specific to a class of activities. An analysis of the monomer compositions of peptide products predicted from genomic information (metagenomics and high-throughput genome sequencing) or of new peptides detected by mass spectrometry analysis applied to a culture supernatant can provide indications of the origin of a peptide and/or its biological activity. [less ▲]

Detailed reference viewed: 3 (0 ULg)
Full Text
Peer Reviewed
See detailThe Monofunctional Glycosyltransferase of Escherichia Coli Localizes to the Cell Division Site and Interacts with Penicillin-Binding Protein 3, FtsW, and FtsN
Derouaux, Adeline ULg; Wolf, Benoît ULg; Fraipont, Claudine ULg et al

in Journal of Bacteriology (2008), 190(5), 1831-4

The monofunctional peptidoglycan glycosyltransferase (MtgA) catalyzes glycan chain elongation of the bacterial cell wall. Here we show that MtgA localizes at the division site of Escherichia coli cells ... [more ▼]

The monofunctional peptidoglycan glycosyltransferase (MtgA) catalyzes glycan chain elongation of the bacterial cell wall. Here we show that MtgA localizes at the division site of Escherichia coli cells that are deficient in PBP1b and produce a thermosensitive PBP1a and is able to interact with three constituents of the divisome, PBP3, FtsW, and FtsN, suggesting that MtgA may play a role in peptidoglycan assembly during the cell cycle in collaboration with other proteins. [less ▲]

Detailed reference viewed: 36 (10 ULg)
Full Text
Peer Reviewed
See detailPBP5 complementation of a PBP3 deficiency in Enterococcus hirae
Leimanis, S.; Hoyez, N.; Hubert, S et al

in Journal of Bacteriology (2006), 188(17), 6298-6307

The low susceptibility of enterococci to beta-lactams is due to the activity of the low-affinity penicillin-binding protein 5 (PBP5). One important feature of PBP5 is its ability to substitute for most ... [more ▼]

The low susceptibility of enterococci to beta-lactams is due to the activity of the low-affinity penicillin-binding protein 5 (PBP5). One important feature of PBP5 is its ability to substitute for most, if not all, penicillin-binding proteins when they are inhibited. That substitution activity was analyzed in Enterococcus hirae SL2, a mutant whose pbp5 gene was interrupted by the nisRK genes and whose PBP3 synthesis was submitted to nisin induction. Noninduced SL2 cells were unable to divide except when plasmid-borne pbp5 genes were present, provided that the PBP5 active site was functional. Potential protein-protein interaction sites of the PBP5 N-terminal module were mutagenized by site-directed mutagenesis. The T-167-L-184 region (designated site D) appeared to be an essential intramolecular site needed for the stability of the protein. Mutations made in the two globular domains present in the N-terminal module indicated that they were needed for the suppletive activity. The P-197-N-209 segment (site E) in one of these domains seemed to be particularly important, as single and double mutations reduced or almost completely abolished, respectively, the action of PBP5. [less ▲]

Detailed reference viewed: 55 (20 ULg)
Full Text
Peer Reviewed
See detailDevA, a GntR-like transcriptional regulator required for development in Streptomyces coelicolor
Hoskisson, P. A.; Rigali, Sébastien ULg; Fowler, K. et al

in Journal of Bacteriology (2006), 188(14), 5014-5023

The gram-positive filamentous bacterium Streptomyces coelicolor has a complex developmental cycle with three distinct phases: growth of the substrate mycelium, development of reproductive structures ... [more ▼]

The gram-positive filamentous bacterium Streptomyces coelicolor has a complex developmental cycle with three distinct phases: growth of the substrate mycelium, development of reproductive structures called aerial hyphae, and differentiation of these aerial filaments into long chains of exospores. During a transposon mutagenesis screen, we identified a novel gene (devA) required for proper development. The devA mutant produced only rare aerial hyphae, and those that were produced developed aberrant spore chains that were much shorter than wild-type chains and had misplaced septa. devA encodes a member of the GntR superfamily, a class of transcriptional regulators that typically respond to metabolite effector molecules. devA forms an operon with the downstream gene devB, which encodes a putative hydrolase that is also required for aerial mycelium formation on R5 medium. S1 nuclease protection analysis showed that transcription from the single devA promoter was temporally associated with vegetative growth, and enhanced green fluorescent protein transcriptional fusions showed that transcription was spatially confined to the substrate hyphae in the wild type. In contrast, devAB transcript levels were dramatically upregulated in a devA mutant and the devA promoter was also active in aerial hyphae and spores in this background, suggesting that DevA might negatively regulate its own production. This suggestion was confirmed by gel mobility shift assays that showed that DevA binds its own promoter region in vitro. [less ▲]

Detailed reference viewed: 32 (0 ULg)
Full Text
Peer Reviewed
See detailKinetic characterization of the monofunctional glycosyltransferase from Staphylococcus aureus
Terrak, Mohammed ULg; Nguyen-Disteche, M.

in Journal of Bacteriology (2006), 188(7), 2528-2532

The glycosyltransferase (GT) module of class A penicillin-binding proteins (PBPs) and monofunctional GTs (MGTs) belong to the GT51 family in the sequence-based classification of GTs. They both possess ... [more ▼]

The glycosyltransferase (GT) module of class A penicillin-binding proteins (PBPs) and monofunctional GTs (MGTs) belong to the GT51 family in the sequence-based classification of GTs. They both possess five conserved motifs and use lipid II precursor (undecaprenyl-pyrophosphate-N-acetylglucosaminyl-N-acetylmuramoyl- pentapeptide) to synthesize the glycan chain of the bacterial wall peptidoglycan. MGTs appear to be dispensable for growth of some bacteria in vitro. However, new evidence shows that they may be essential for the infection process and development of pathogenic bacteria in their hosts. Only a small number of class A PBPs have been characterized so far, and no kinetic data are available on MGTs. In this study, we present the principal enzymatic properties of the Staphylococcus aureus MGT. The enzyme catalyzes glycan chain polymerization with an efficiency of similar to 5,800 M-1 s(-1) and has a pH optimum of 7.5, and its activity requires metal ions with a maximum observed in the presence of Mn2+. The properties of S. aureus MGT are distinct from those of S. aureus PBP2 and Escherichia coli MGT, but they are similar to those of E. coli PBP1b. We examined the role of the conserved Glu100 of S. aureus MGT (equivalent to the proposed catalytic Glu233 of E. coli PBP1b) by site-directed mutagenesis. The Glu100Gln mutation results in a drastic loss of GT activity. This shows that Glu100 is also critical for catalysis in S. aureus MGT and confirms that the conserved glutamate of the first motif EDXXFXX(H/N)X(G/A) is likely the key catalytic residue in the GT51 active site. [less ▲]

Detailed reference viewed: 22 (2 ULg)
Full Text
Peer Reviewed
See detailCharacterization of the bifunctional glycosyltransferase/acyltransferase penicillin-binding protein 4 of Listeria monocytogenes
Zawadzka-Skomial, J.; Markiewicz, Z.; Nguyen-Disteche, M. et al

in Journal of Bacteriology (2006), 188(5), 1875-1881

Multimodular penicillin-binding proteins (PBPs) are essential enzymes responsible for bacterial cell wall peptidoglycan (PG) assembly. Their glycosyltransferase activity catalyzes glycan chain elongation ... [more ▼]

Multimodular penicillin-binding proteins (PBPs) are essential enzymes responsible for bacterial cell wall peptidoglycan (PG) assembly. Their glycosyltransferase activity catalyzes glycan chain elongation from lipid II substrate (undecaprenyl-pyrophosphoryi-N-acetylglucosamine-N-acetylmuramic acid-pentapeptide), and their transpeptidase activity catalyzes cross-linking between peptides carried by two adjacent glycan chains. Listeria monocytogenes is a food-borne pathogen which exerts its virulence through secreted and cell wall PG-associated virulence factors. This bacterium has five PBPs, including two bifunctional glycosyltransferase/transpeptidase class A PBPs, namely, PBP1 and PBP4. We have expressed and purified the latter and have shown that it binds penicillin and catalyzes in vitro glycan chain polymerization with an efficiency of 1,400 M-1 s(-1) from Escherichia coli lipid II substrate. PBP4 also catalyzes the aminolysis (D-Ala as acceptor) and hydrolysis of the thiolester donor substrate benzoyl-Gly-thioglycolate, indicating that PBP4 possesses both transpeptidase and carboxyeptidase activities. Disruption of the gene lmo2229 encoding PBP4 in L. monocytogenes EGD did not. p have any significant effect on growth rate, peptidoglycan composition, cell morphology, or sensitivity to beta-lactam antibiotics but did increase the resistance of the mutant to moenomycin. [less ▲]

Detailed reference viewed: 28 (6 ULg)
Full Text
Peer Reviewed
See detailPip, a novel activator of phenazine biosynthesis in Pseudomonas chlororaphis PCL1391
Girard, Geneviève; Barends, S.; Rigali, Sébastien ULg et al

in Journal of Bacteriology (2006), 188(23), 8283-8293

Secondary metabolites are important factors for interactions between bacteria and other organisms. Pseudomonas chlororaphis PCL1391 produces the antifungal secondary metabolite phenazine-1-carboxamide ... [more ▼]

Secondary metabolites are important factors for interactions between bacteria and other organisms. Pseudomonas chlororaphis PCL1391 produces the antifungal secondary metabolite phenazine-1-carboxamide (PCN) that inhibits growth of Fusarium oxysporum f. sp. radius lycopersici the causative agent of tomato foot and root rot. Our previous work unraveled a cascade of genes regulating the PCN biosynthesis operon, phzABCDEFGH. Via a genetic screen, we identify in this study a novel TetR/AcrR regulator, named Pip (phenazine inducing protein), which is essential for PCN biosynthesis. A combination of a phenotypical characterization of a pip mutant, in trans complementation assays of various mutant strains, and electrophoretic mobility shift assays identified Pip as the fifth DNA-binding protein so far involved in regulation of PCN biosynthesis. In this regulatory pathway, Pip is positioned downstream of PsrA (Pseudomonas sigma factor regulator) and the stationary-phase sigma factor RpoS, while it is upstream of the quorum-sensing system PhzI/PhzR. These findings provide further evidence that the path leading to the expression of secondary metabolism gene clusters in Pseudomonas species is highly complex. [less ▲]

Detailed reference viewed: 32 (0 ULg)
Full Text
Peer Reviewed
See detailRole of disulfide bridges in the activity and stability of a cold-active alpha-amylase
Siddiqui, K. S.; Poljak, A.; Guilhaus, M. et al

in Journal of Bacteriology (2005), 187(17), 6206-6212

The cold-adapted alpha-amylase from Pseudoalteromonas haloplanktis unfolds reversibly and cooperatively according to a two-state mechanism at 30 degrees C and unfolds reversibly and sequentially with two ... [more ▼]

The cold-adapted alpha-amylase from Pseudoalteromonas haloplanktis unfolds reversibly and cooperatively according to a two-state mechanism at 30 degrees C and unfolds reversibly and sequentially with two transitions at temperatures below 12 degrees C. To examine the role of the four disulfide bridges in activity and conformational stability of the enzyme, the eight cysteine residues were reduced with beta-mercaptoethanol or chemically modified using iodoacetamide or iodoacetic acid. Matrix-assisted laser desorption-time of flight mass spectrometry analysis confirmed that all of the cysteines were modified. The iodoacetamide-modified enzyme reversibly folded/unfolded and retained approximately one-third of its activity. Removal of all disulfide bonds resulted in stabilization of the least stable region of the enzyme (including the active site), with a concomitant decrease in activity (increase in activation enthalpy). Disulfide bond removal had a greater impact on enzyme activity than on stability (particularly the active-site region). The functional role of the disulfide bridges appears to be to prevent the active site from developing ionic interactions. Overall, the study demonstrated that none of the four disulfide bonds are important in stabilizing the native structure of enzyme, and instead, they appear to promote a localized destabilization to preserve activity. [less ▲]

Detailed reference viewed: 14 (0 ULg)
Full Text
Peer Reviewed
See detailThe active site is the least stable structure in the unfolding pathway of a multidomain cold-adapted alpha-amylase
Siddiqui, K. S.; Feller, Georges ULg; D'Amico, Salvino ULg et al

in Journal of Bacteriology (2005), 187(17), 6197-6205

The cold-active alpha-amylase from the Antarctic bacterium Pseudoalteromonas haloplanktis (AHA) is the largest known multidomain enzyme that displays reversible thermal unfolding (around 30 degrees C ... [more ▼]

The cold-active alpha-amylase from the Antarctic bacterium Pseudoalteromonas haloplanktis (AHA) is the largest known multidomain enzyme that displays reversible thermal unfolding (around 30 degrees C) according to a two-state mechanism. Transverse urea gradient gel electrophoresis (TUG-GE) from 0 to 6.64 M was performed under various conditions of temperature (3 degrees C to 70 degrees C) and pH (7.5 to 10.4) in the absence or presence of Ca2+ and/or Tris (competitive inhibitor) to identify possible low-stability domains. Contrary to previous observations by strict thermal unfolding, two transitions were found at low temperature (12 degrees C). Within the duration of the TUG-GE, the structures undergoing the first transition showed slow interconversions between different conformations. By comparing the properties of the native enzyme and the N12R mutant, the active site was shown to be part of the least stable structure in the enzyme. The stability data supported a model of cooperative unfolding of structures forming the active site and independent unfolding of the other more stable protein domains. In light of these findings for AHA, it will be valuable to determine if active-site instability is a general feature of heat-labile enzymes from psychrophiles. Interestingly, the enzyme was also found to refold and rapidly regain activity after being heated at 70 degrees C for 1 h in 6.5 M urea. The study has identified. fundamental new properties of AHA and extended our understanding of structure/stability relationships of cold-adapted enzymes. [less ▲]

Detailed reference viewed: 18 (0 ULg)
Full Text
Peer Reviewed
See detailTp0453, A Concealed Outer Membrane Protein Of Treponema Pallidum, Enhances Membrane Permeability
Hazlett, Kro.; Cox, Dl.; Decaffmeyer, Marc ULg et al

in Journal of Bacteriology (2005), 187(18), 6499-508

he outer membrane of Treponema pallidum, the non-cultivable agent of venereal syphilis, contains a paucity of protein(s) which has yet to be definitively identified. In contrast, the outer membranes of ... [more ▼]

he outer membrane of Treponema pallidum, the non-cultivable agent of venereal syphilis, contains a paucity of protein(s) which has yet to be definitively identified. In contrast, the outer membranes of gram-negative bacteria contain abundant immunogenic membrane-spanning beta-barrel proteins mainly involved in nutrient transport. The absence of orthologs of gram-negative porins and outer membrane nutrient-specific transporters in the T. pallidum genome predicts that nutrient transport across the outer membrane must differ fundamentally in T. pallidum and gram-negative bacteria. Here we describe a T. pallidum outer membrane protein (TP0453) that, in contrast to all integral outer membrane proteins of known structure, lacks extensive beta-sheet structure and does not traverse the outer membrane to become surface exposed. TP0453 is a lipoprotein with an amphiphilic polypeptide containing multiple membrane-inserting, amphipathic alpha-helices. Insertion of the recombinant, non-lipidated protein into artificial membranes results in bilayer destabilization and enhanced permeability. Our findings lead us to hypothesize that TP0453 is a novel type of bacterial outer membrane protein which may render the T. pallidum outer membrane permeable to nutrients while remaining inaccessible to antibody. [less ▲]

Detailed reference viewed: 10 (2 ULg)
Full Text
Peer Reviewed
See detailFunctional analysis of the cell division protein FtsW of Escherichia coli
Pastoret, Soumya; Fraipont, Claudine ULg; den Blaauwen, Tanneke et al

in Journal of Bacteriology (2004), 186(24), 8370-8379

Site-directed mutagenesis experiments combined with fluorescence microscopy shed light on the role of Escherichia coli FtsW, a membrane protein belonging to the SEDS family that is involved in ... [more ▼]

Site-directed mutagenesis experiments combined with fluorescence microscopy shed light on the role of Escherichia coli FtsW, a membrane protein belonging to the SEDS family that is involved in peptidoglycan assembly during cell elongation, division, and sporulation. This essential cell division protein has 10 transmembrane segments (TMSs). It is a late recruit to the division site and is required for subsequent recruitment of penicillin-binding protein 3 (PBP3) catalyzing peptide cross-linking. The results allow identification of several domains of the protein with distinct functions. The localization of PBP3 to the septum was found to be dependent on the periplasmic loop located between TMSs 9 and 10. The E240-A249 amphiphilic peptide in the periplasmic loop between TMSs 7 and 8 appears to be a key element in the functioning of FtsW in the septal peptidoglycan assembly machineries. The intracellular loop (containing the R166-FI78 amphiphilic peptide) between TMSs 4 and 5 and Gly 311 in TMS 8 are important components of the amino acid sequence-folding information. [less ▲]

Detailed reference viewed: 114 (11 ULg)
Full Text
Peer Reviewed
See detailStructural determinants required to target penicillin-binding protein 3 to the septum of Escherichia coli
Piette, André ULg; Fraipont, Claudine ULg; den Blaauwen, Tanneke et al

in Journal of Bacteriology (2004), 186(18), 6110-6117

In Escherichia coli, cell division is mediated by the concerted action of about 12 proteins that assemble at the division site to presumably form a complex called the divisome. Among these essential ... [more ▼]

In Escherichia coli, cell division is mediated by the concerted action of about 12 proteins that assemble at the division site to presumably form a complex called the divisome. Among these essential division proteins, the multimodular class B penicillin-binding protein 3 (PBP3), which is specifically involved in septall peptidoglycan synthesis, consists of a short intraceflular M1-R23 peptide fused to a F24-L39 membrane anchor that is linked via a G40-S70 peptide to an R71-1236 noncatalytic module itself linked to a D237-V577 catalytic penicillin -binding module. On the basis of localization analyses of PBP3 mutants fused to green fluorescent protein by fluorescence microscopy, it appears that the first 56 amino acid residues of PBP3 containing the membrane anchor and the G40-E56 peptide contain the structural determinants required to target the protein to the cell division site and that none of the putative protein interaction sites present in the noncatalytic module are essential for the positioning of the protein to the division site. Based on the effects of increasing production of FtsQ or FtsW on the division of cells expressing PBP3 mutants, it is suggested that these proteins could interact. We postulate that FtsQ could play a role in regulating the assembly of these division proteins at the division site and the activity of the peptidoglycan assembly machineries within the divisome. [less ▲]

Detailed reference viewed: 31 (8 ULg)
Full Text
Peer Reviewed
See detailThe ponA gene of Enterococcus faecalis JH2-2 codes for a low-affinity class a penicillin-binding protein
Duez, Colette ULg; Hallut, Séverine; Rhazi, Noureddine ULg et al

in Journal of Bacteriology (2004), 186(13), 4412-4416

soluble derivative of the Enterococcus faecalis JH2-2 class A PBP1 (*PBP1) was overproduced and purified. It exhibited a glycosyltransferase activity on the Escherichia coli (14)C(-)labeled lipid 11 ... [more ▼]

soluble derivative of the Enterococcus faecalis JH2-2 class A PBP1 (*PBP1) was overproduced and purified. It exhibited a glycosyltransferase activity on the Escherichia coli (14)C(-)labeled lipid 11 precursor. As a DD-peptidase, it could hydrolyze thiolester substrates with efficiencies similar to those of other class A penicillin-binding proteins (PBPs) and bind beta-lactams, but with k(2)/K (a parameter accounting for the acylation step efficiency) values characteristic of penicillin-resistant PBPs. [less ▲]

Detailed reference viewed: 45 (8 ULg)
Full Text
Peer Reviewed
See detailDeletion of a cyclic AMP receptor protein homologue diminishes germination and affects morphological development of Streptomyces coelicolor
Derouaux, Adeline ULg; Halici, S.; Nothaft, H. et al

in Journal of Bacteriology (2004), 186(6), 1893-1897

Open reading frame SCO3571 of Streptomyces coelicolor encodes a protein of the cyclic AMP (cAMP) receptor protein (CRP) superfamily of regulatory proteins. A mutant revealed a dramatic defect in ... [more ▼]

Open reading frame SCO3571 of Streptomyces coelicolor encodes a protein of the cyclic AMP (cAMP) receptor protein (CRP) superfamily of regulatory proteins. A mutant revealed a dramatic defect in germination, followed by growth delay and earlier sporulation. This phenotype correlates with those of an adenylate cyclase (cya) mutant that cannot synthesize cAMP. This finding suggests that S. coelicolor may use a Cya-cAMP-CRP system to trigger complex physiological processes such as morphogenesis. [less ▲]

Detailed reference viewed: 15 (3 ULg)