References of "GPS Solutions"
     in
Bookmark and Share    
Full Text
Peer Reviewed
See detailComputation of GPS P1–P2 Differential Code Biases with JASON-2
Wautelet, Gilles ULg; Loyer, Sylvain; Mercier, Flavien et al

in GPS Solutions (2017)

GPS Differential Code Biases (DCBs) computation is usually based on ground networks of permanent stations. The drawback of the classical methods is the need for the ionospheric delay so that any error in ... [more ▼]

GPS Differential Code Biases (DCBs) computation is usually based on ground networks of permanent stations. The drawback of the classical methods is the need for the ionospheric delay so that any error in this quantity will map into the solution. Nowadays, many low-orbiting satellites are equipped with GPS receivers which are initially used for precise orbitography. Considering spacecrafts at an altitude above the ionosphere, the ionized contribution comes from the plasmasphere, which is less variable in time and space. Based on GPS data collected onboard JASON-2 spacecraft, we present a methodology which computes in the same adjustment the satellite and receiver DCBs in addition to the plasmaspheric vertical total electron content (VTEC) above the satellite, the average satellite bias being set to zero. Results show that GPS satellite DCB solutions are very close to those of the IGS analysis centers using ground measurements. However, the receiver DCB and VTEC are closely correlated, and their value remains sensitive to the choice of the plasmaspheric parametrization. [less ▲]

Detailed reference viewed: 10 (1 ULg)
Full Text
Peer Reviewed
See detailGalileo Single Frequency Ionospheric Correction: Performances in Terms of Position
Bidaine, Benoît ULg; Lonchay, Matthieu ULg; Warnant, René ULg

in GPS Solutions (2013), 17(1), 63-73

For GPS single frequency users, the ionospheric contribution to the error budget is estimated by the well-known Klobuchar algorithm. For Galileo, it will be mitigated by a global algorithm based on the ... [more ▼]

For GPS single frequency users, the ionospheric contribution to the error budget is estimated by the well-known Klobuchar algorithm. For Galileo, it will be mitigated by a global algorithm based on the NeQuick model. This algorithm relies on the adaptation of the model to slant Total Electron Content (sTEC) measurements. Although the performance specifications of these algorithms are expressed in terms of delay and TEC, the users might be more interested in their impact on positioning. Therefore, we assessed the ability of the algorithms to improve the positioning accuracy using globally distributed permanent stations for the year 2002 marked by a high level of solar activity. We present uncorrected and corrected performances, interpret these and identify potential causes for Galileo correction discrepancies. We show vertical errors dropping by 56–64 % due to the analyzed ionospheric corrections, but horizontal errors decreasing by 27 % at most. By means of a fictitious symmetric satellite distribution, we highlight the role of TEC gradients in residual errors. We describe mechanisms permitted by the Galileo correction, which combine sTEC adaptation and topside mismodeling, and limit the horizontal accuracy. Hence, we support further investigation of potential alternative ionospheric corrections. We also provide an interesting insight into the ionospheric effects possibly experienced during the next solar maximum coinciding with Galileo Initial Operation Capability. [less ▲]

Detailed reference viewed: 291 (19 ULg)
Full Text
Peer Reviewed
See detailIonospheric effects on relative positioning within GPS dense network
Lejeune, Sandrine; Wautelet, Gilles ULg; Warnant, René ULg

in GPS Solutions (2012), 16(1), 105-116

Detailed reference viewed: 125 (15 ULg)