References of "Atmospheric Chemistry & Physics Discussions"
     in
Bookmark and Share    
Full Text
Peer Reviewed
See detailAnalysis of the global atmospheric methane budget using ECHAM-MOZ simulations for present-day, pre-industrial time and the Last Glacial Maximum
Basu, A.; Schultz, M. G.; Schröder, S. et al

in Atmospheric Chemistry & Physics Discussions (2014), 14

Atmospheric methane concentrations increased considerably from pre-industrial (PI) to present times largely due to anthropogenic emissions. However, firn and ice core records also document a notable rise ... [more ▼]

Atmospheric methane concentrations increased considerably from pre-industrial (PI) to present times largely due to anthropogenic emissions. However, firn and ice core records also document a notable rise of methane levels between the Last Glacial Maximum (LGM) and the pre-industrial era, the exact cause of which is not entirely clear. This study investigates these changes by analyzing the methane sources and sinks at each of these climatic periods. Wetlands are the largest natural source of methane and play a key role in determining methane budget changes in particular in the absence of anthropogenic sources. Here, a simple wetland parameterization suitable for coarse-scale climate simulations over long periods is introduced, which is derived from a high- resolution map of surface slopes together with various soil hydrology parameters from the CARAIB vegetation model. This parameterization was implemented in the chem- istry general circulation model ECHAM5-MOZ and multi-year time slices were run for LGM, PI and present-day (PD) climate conditions. Global wetland emissions from our parameterization are 72 Tg yr [less ▲]

Detailed reference viewed: 13 (3 ULg)
Full Text
Peer Reviewed
See detailTrends of ozone total columns and vertical distribution from FTIR observations at 8 NDACC stations around the globe
Vigouroux, C; Blumenstock, T; Coffey, M et al

in Atmospheric Chemistry & Physics Discussions (2014), 14

Ground-based Fourier transform infrared (FTIR) measurements of solar absorption spectra can provide ozone total columns with a precision of 2%, but also independent partial column amounts in about four ... [more ▼]

Ground-based Fourier transform infrared (FTIR) measurements of solar absorption spectra can provide ozone total columns with a precision of 2%, but also independent partial column amounts in about four vertical layers, one in the troposphere and three in the stratosphere up to about 45 km, with a precision of 5–6%. We use eight of the Network for the Detection of Atmospheric Compososition Change (NDACC) stations having a long-term time series of FTIR ozone measurements to study the total and vertical ozone trends and variability, namely: Ny-Alesund (79° N), Thule (77° N), Kiruna (68° N), Harestua (60° N), Jungfraujoch (47° N), Izaña (28° N), Wollongong (34° S) and Lauder (45° S). The length of the FTIR time-series varies by station, but is typically from about 1995 to present. We applied to the monthly means of the ozone total and four partial columns a stepwise multiple regression model including the following proxies: solar cycle, Quasi-Biennial Oscillation (QBO), El Niño-Southern Oscillation (ENSO), Arctic and Antarctic Oscillation (AO/AAO), tropopause pressure (TP), equivalent latitude (EL), Eliassen-Palm flux (EPF), and volume of polar stratospheric clouds (VPSC). At the Arctic stations, the trends are found mostly negative in the troposphere and lower stratosphere, very mixed in the middle stratosphere, positive in the upper stratosphere due to a large increase in the 1995–2003 period, and non-significant when considering the total columns. The trends for mid-latitude and subtropical stations are all non-significant, except at Lauder in the troposphere and upper stratosphere, and at Wollongong for the total columns and the lower and middle stratospheric columns; at Jungfraujoch, the upper stratospheric trend is close to significance (+0.9 ± 1.0 % decade−1). Therefore, some signs of the onset of ozone mid-latitude recovery are observed only in the Southern Hemisphere, while a few more years seems to be needed to observe it at the northern mid-latitude station. [less ▲]

Detailed reference viewed: 15 (1 ULg)