References of "Proceedings of the National Academy of Sciences of the United States of America"
     in
Bookmark and Share    
Full Text
Peer Reviewed
See detailCrystal structure and activity of Bacillus subtilis YoaJ (EXLX1), a bacterial expansin that promotes root colonization.
Kerff, Frédéric ULg; Amoroso, Ana Maria ULg; Herman, Raphaël ULg et al

in Proceedings of the National Academy of Sciences of the United States of America (2008), 105(44), 16876-81

We solved the crystal structure of a secreted protein, EXLX1, encoded by the yoaJ gene of Bacillus subtilis. Its structure is remarkably similar to that of plant beta-expansins (group 1 grass pollen ... [more ▼]

We solved the crystal structure of a secreted protein, EXLX1, encoded by the yoaJ gene of Bacillus subtilis. Its structure is remarkably similar to that of plant beta-expansins (group 1 grass pollen allergens), consisting of 2 tightly packed domains (D1, D2) with a potential polysaccharide-binding surface spanning the 2 domains. Domain D1 has a double-psi beta-barrel fold with partial conservation of the catalytic site found in family 45 glycosyl hydrolases and in the MltA family of lytic transglycosylases. Domain D2 has an Ig-like fold similar to group 2/3 grass pollen allergens, with structural features similar to a type A carbohydrate-binding domain. EXLX1 bound to plant cell walls, cellulose, and peptidoglycan, but it lacked lytic activity against a variety of plant cell wall polysaccharides and peptidoglycan. EXLX1 promoted plant cell wall extension similar to, but 10 times weaker than, plant beta-expansins, which synergistically enhanced EXLX1 activity. Deletion of the gene encoding EXLX1 did not affect growth or peptidoglycan composition of B. subtilis in liquid medium, but slowed lysis upon osmotic shock and greatly reduced the ability of the bacterium to colonize maize roots. The presence of EXLX1 homologs in a small but diverse set of plant pathogens further supports a role in plant-bacterial interactions. Because plant expansins have proved difficult to express in active form in heterologous systems, the discovery of a bacterial homolog opens the door for detailed structural studies of expansin function. [less ▲]

Detailed reference viewed: 135 (12 ULg)
Full Text
Peer Reviewed
See detailInositol trisphosphate 3-kinase B (InsP3KB) as a physiological modulator of myelopoiesis
Jia, Y.; Loison, F.; Erneux, C. et al

in Proceedings of the National Academy of Sciences of the United States of America (2008), 105

Inositol trisphosphate 3-kinase B (InsP3KB) belongs to a family of kinases that convert inositol 1,4,5-trisphosphate (Ins(1,4,5)P3 or IP3) to inositol 1,3,4,5-tetrakisphosphate (Ins(1,3,4,5)P4). Previous ... [more ▼]

Inositol trisphosphate 3-kinase B (InsP3KB) belongs to a family of kinases that convert inositol 1,4,5-trisphosphate (Ins(1,4,5)P3 or IP3) to inositol 1,3,4,5-tetrakisphosphate (Ins(1,3,4,5)P4). Previous studies have shown that disruption of InsP3KB leads to impaired T cell and B cell development as well as hyperactivation of neutrophils. Here, we demonstrate that InsP3KB is also a physiological modulator of myelopoiesis. The InsP3KB gene is expressed in all hematopoietic stem/progenitor cell populations. In InsP3KB null mice, the bone marrow granulocyte monocyte progenitor (GMP) population was expanded, and GMP cells proliferated significantly faster. Consequently, neutrophil production in the bone marrow was enhanced, and the peripheral blood neutrophil count was also substantially elevated in these mice. These effects might be due to enhancement of PtdIns(3,4,5)P3/Akt signaling in the InsP3KB null cells. Phosphorylation of cell cycle-inhibitory protein p21(cip1), one of the downstream targets of Akt, was augmented, which can lead to the suppression of the cell cycle-inhibitory effect of p21 [less ▲]

Detailed reference viewed: 25 (8 ULg)
Full Text
Peer Reviewed
See detailSpontaneous neural activity during human slow wave sleep.
Dang Vu, Thien Thanh ULg; Schabus, Manuel ULg; Desseilles, Martin ULg et al

in Proceedings of the National Academy of Sciences of the United States of America (2008), 105(39), 15160-5

Slow wave sleep (SWS) is associated with spontaneous brain oscillations that are thought to participate in sleep homeostasis and to support the processing of information related to the experiences of the ... [more ▼]

Slow wave sleep (SWS) is associated with spontaneous brain oscillations that are thought to participate in sleep homeostasis and to support the processing of information related to the experiences of the previous awake period. At the cellular level, during SWS, a slow oscillation (<1 Hz) synchronizes firing patterns in large neuronal populations and is reflected on electroencephalography (EEG) recordings as large-amplitude, low-frequency waves. By using simultaneous EEG and event-related functional magnetic resonance imaging (fMRI), we characterized the transient changes in brain activity consistently associated with slow waves (>140 microV) and delta waves (75-140 microV) during SWS in 14 non-sleep-deprived normal human volunteers. Significant increases in activity were associated with these waves in several cortical areas, including the inferior frontal, medial prefrontal, precuneus, and posterior cingulate areas. Compared with baseline activity, slow waves are associated with significant activity in the parahippocampal gyrus, cerebellum, and brainstem, whereas delta waves are related to frontal responses. No decrease in activity was observed. This study demonstrates that SWS is not a state of brain quiescence, but rather is an active state during which brain activity is consistently synchronized to the slow oscillation in specific cerebral regions. The partial overlap between the response pattern related to SWS waves and the waking default mode network is consistent with the fascinating hypothesis that brain responses synchronized by the slow oscillation restore microwake-like activity patterns that facilitate neuronal interactions. [less ▲]

Detailed reference viewed: 134 (27 ULg)
Full Text
Peer Reviewed
See detailA type II NAD(P)H dehydrogenase mediates light-independent plastoquinone reduction in the chloroplast of Chlamydomonas
Jans, Frédéric ULg; Mignolet, Emmanuel ULg; Houyoux, Pierre-Alain et al

in Proceedings of the National Academy of Sciences of the United States of America (2008), 105(51), 20546-51

In photosynthetic eukaryotes, nonphotochemical plastoquinone (PQ) reduction is important for the regulation of photosynthetic electron flow. In green microalgae where this process has been demonstrated ... [more ▼]

In photosynthetic eukaryotes, nonphotochemical plastoquinone (PQ) reduction is important for the regulation of photosynthetic electron flow. In green microalgae where this process has been demonstrated, the chloroplastic enzyme that catalyses nonphotochemical PQ reduction has not been identified yet. Here, we show by an RNA interference (RNAi) approach that the NDA2 gene, belonging to a type II NAD(P)H dehydrogenases family in the green microalga Chlamydomonas reinhardtii, encodes a chloroplastic dehydrogenase that functions to reduce PQ nonphotochemically in this alga. Using a specific antibody, we show that the Nda2 protein is localized in chloroplasts of wild-type cells and is absent in two Nda2-RNAi cell lines. In both mutant cell lines, nonphotochemical PQ reduction is severely affected, as indicated by altered chlorophyll fluorescence transients after saturating illumination. Compared with wild type, change in light excitation distribution between photosystems ('state transition') upon inhibition of mitochondrial electron transport is strongly impaired in transformed cells because of inefficient PQ reduction. Furthermore, the amount of hydrogen produced by Nda2-RNAi cells under sulfur deprivation is substantially decreased compared with wild type, which supports previous assumptions that endogenous substrates serve as source of electrons for hydrogen formation. These results demonstrate the importance of Nda2 for nonphotochemical PQ reduction and associated processes in C. reinhardtii. [less ▲]

Detailed reference viewed: 103 (38 ULg)
Full Text
Peer Reviewed
See detailBaseline brain activity fluctuations predict somatosensory perception in humans
Boly, Mélanie ULg; Balteau, Evelyne ULg; Schnakers, Caroline ULg et al

in Proceedings of the National Academy of Sciences of the United States of America (2007), 104(29), 12187-12192

In perceptual experiments, within-individual fluctuations in perception are observed across multiple presentations of the same stimuli, a phenomenon that remains only partially understood. Here, by means ... [more ▼]

In perceptual experiments, within-individual fluctuations in perception are observed across multiple presentations of the same stimuli, a phenomenon that remains only partially understood. Here, by means of thulium-yttrium/aluminum- garnet laser and event-related functional MRI, we tested whether variability in perception of identical stimuli relates to differences in prestimulus, baseline brain activity. Results indicate a positive relationship between conscious perception of low-intensity somatosensory stimuli and immediately preceding levels of baseline activity in medial thalamus and the lateral frontoparietal network, respectively, which are thought to relate to vigilance and "external monitoring." Conversely, there was a negative correlation between subsequent reporting of conscious perception and baseline activity in a set of regions encompassing posterior cingulate/ precuneus and temporoparietal cortices, possibly relating to introspection and self-oriented processes. At nociceptive levels of stimulation, pain-intensity ratings positively correlated with baseline fluctuations in anterior cingulate cortex in an area known to be involved in the affective dimension of pain. These results suggest that baseline brain-activity fluctuations may profoundly modify our conscious perception of the external world. [less ▲]

Detailed reference viewed: 28 (4 ULg)
Full Text
Peer Reviewed
See detailTransgenic LacZ under control of Hec-6st regulatory sequences recapitulates endogenous gene expression on high endothelial venules.
Liao, Shan; Bentley, Kevin; Lebrun, Marielle ULg et al

in Proceedings of the National Academy of Sciences of the United States of America (2007), 104(11), 4577-82

Hec-6st is a highly specific high endothelial venule (HEV) gene that is crucial for regulating lymphocyte homing to lymph nodes (LN). The enzyme is also expressed in HEV-like vessels in tertiary lymphoid ... [more ▼]

Hec-6st is a highly specific high endothelial venule (HEV) gene that is crucial for regulating lymphocyte homing to lymph nodes (LN). The enzyme is also expressed in HEV-like vessels in tertiary lymphoid organs that form in chronic inflammation in autoimmunity, graft rejection, and microbial infection. Understanding the molecular nature of Hec-6st regulation is crucial for elucidating its function in development and disease. However, studies of HEV are limited because of the difficulties in isolating and maintaining the unique characteristics of these vessels in vitro. The novel pClasper yeast homologous recombination technique was used to isolate from a BAC clone a 60-kb DNA fragment that included the Hec-6st (Chst4) gene with flanking sequences. Transgenic mice were generated with the beta-galactosidase (LacZ) reporter gene inserted in-frame in the exon II of Hec-6st within the isolated BAC DNA fragment. LacZ was expressed specifically on HEV in LN, as indicated by its colocalization with peripheral node vascular addressin. LacZ was increased in nasal-associated lymphoid tissue during development and was reduced in LN and nasal-associated lymphoid tissue by LTbetaR-Ig (lymphotoxin-beta receptor human Ig fusion protein) treatment in a manner identical to the endogenous gene. The transgene was expressed at high levels in lymphoid accumulations with characteristics of tertiary lymphoid organs in the salivary glands of aged mice. Thus, the Hec-6s-LacZ construct faithfully reproduces Hec-6st tissue-specific expression and can be used in further studies to drive expression of reporter or effector genes, which could visualize or inhibit HEV in autoimmunity. [less ▲]

Detailed reference viewed: 19 (1 ULg)
Full Text
Peer Reviewed
See detailHemodynamic cerebral correlates of sleep spindles during human non-rapid eye movement sleep.
Schabus, Manuel ULg; Dang Vu, Thien Thanh ULg; Albouy, Geneviève ULg et al

in Proceedings of the National Academy of Sciences of the United States of America (2007), 104(32), 13164-9

In humans, some evidence suggests that there are two different types of spindles during sleep, which differ by their scalp topography and possibly some aspects of their regulation. To test for the ... [more ▼]

In humans, some evidence suggests that there are two different types of spindles during sleep, which differ by their scalp topography and possibly some aspects of their regulation. To test for the existence of two different spindle types, we characterized the activity associated with slow (11-13 Hz) and fast (13-15 Hz) spindles, identified as discrete events during non-rapid eye movement sleep, in non-sleep-deprived human volunteers, using simultaneous electroencephalography and functional MRI. An activation pattern common to both spindle types involved the thalami, paralimbic areas (anterior cingulate and insular cortices), and superior temporal gyri. No thalamic difference was detected in the direct comparison between slow and fast spindles although some thalamic areas were preferentially activated in relation to either spindle type. Beyond the common activation pattern, the increases in cortical activity differed significantly between the two spindle types. Slow spindles were associated with increased activity in the superior frontal gyrus. In contrast, fast spindles recruited a set of cortical regions involved in sensorimotor processing, as well as the mesial frontal cortex and hippocampus. The recruitment of partially segregated cortical networks for slow and fast spindles further supports the existence of two spindle types during human non-rapid eye movement sleep, with potentially different functional significance. [less ▲]

Detailed reference viewed: 79 (13 ULg)
Full Text
Peer Reviewed
See detailSleep transforms the cerebral trace of declarative memories
Gais, Steffen; Albouy, Geneviève ULg; Boly, Mélanie ULg et al

in Proceedings of the National Academy of Sciences of the United States of America (2007), 104(47), 18778-18783

After encoding, memory traces are initially fragile and have to be reinforced to become permanent. The initial steps of this process occur at a cellular level within minutes or hours. Besides this rapid ... [more ▼]

After encoding, memory traces are initially fragile and have to be reinforced to become permanent. The initial steps of this process occur at a cellular level within minutes or hours. Besides this rapid synaptic consolidation, systems consolidation occurs within a time frame of days to years. For declarative memory, the latter is presumed to rely on an interaction between different brain regions, in particular the hippocampus and the medial prefrontal cortex (mPFC). Specifically, sleep has been proposed to provide a setting that supports such systems consolidation processes, leading to a transfer and perhaps transformation of memories. Using functional MRI, we show that postlearning sleep enhances hippocampal responses during recall of word pairs 48 h after learning, indicating intrahippocampal memory processing during sleep. At the same time, sleep induces a memory-related functional connectivity between the hippocampus and the mPFC. Six months after learning, memories activated the mPFC more strongly when they were encoded before sleep, showing that sleep leads to long-lasting changes in the representation of memories on a systems level. [less ▲]

Detailed reference viewed: 24 (2 ULg)
Full Text
Peer Reviewed
See detailInositol 1,3,4,5-tetrakisphosphate controls proapoptotic Bim gene expression and survival in B cells.
Maréchal, Y.; Pesesse, X.; Jia, Y. et al

in Proceedings of the National Academy of Sciences of the United States of America (2007), 104

The contribution of the B isoform of inositol 1,4,5-trisphosphate [Ins(1,4,5)P(3)] 3-kinase (or Itpkb) and inositol 1,3,4,5-tetrakisphosphate [Ins(1,3,4,5)P(4)], its reaction product, to B cell function ... [more ▼]

The contribution of the B isoform of inositol 1,4,5-trisphosphate [Ins(1,4,5)P(3)] 3-kinase (or Itpkb) and inositol 1,3,4,5-tetrakisphosphate [Ins(1,3,4,5)P(4)], its reaction product, to B cell function and development remains unknown. Here, we show that mice deficient in Itpkb have defects in B cell survival leading to specific and intrinsic developmental alterations in the B cell lineage and antigen unresponsiveness in vivo. The decreased B cell survival is associated with a decreased phosphorylation of Erk1/2 and increased Bim gene expression. B cell survival, development, and antigen responsiveness are normalized in parallel to reduced expression of Bim in Itpkb(-/-) Bim(+/-) mice. Analysis of the signaling pathway downstream of Itpkb revealed that Ins(1,3,4,5)P(4) regulates subcellular distribution of Rasa3, a Ras GTPase-activating protein acting as an Ins(1,3,4,5)P(4) receptor. Together, our results indicate that Itpkb and Ins(1,3,4,5)P(4) mediate a survival signal in B cells via a Rasa3-Erk signaling pathway controlling proapoptotic Bim gene expression [less ▲]

Detailed reference viewed: 24 (4 ULg)
Full Text
Peer Reviewed
See detailTranscranial magnetic stimulation of the visual cortex induces somatotopically organized qualia in blind subjects
Kupers, R.; Fumal, Arnaud ULg; Maertens De Noordhout, Alain ULg et al

in Proceedings of the National Academy of Sciences of the United States of America (2006), 103(35), 13256-13260

After loss of a particular sensory channel, the deprived cortex can be activated by inputs from other sensory modalities. It is not known whether activation of the rewired cortex evokes subjective ... [more ▼]

After loss of a particular sensory channel, the deprived cortex can be activated by inputs from other sensory modalities. It is not known whether activation of the rewired cortex evokes subjective experiences characteristic of that cortex or consistent with the rerouted sensory information. In a previous study, blind subjects were trained to perform visual tasks with a tongue display unit, a sensory substitution device that translates visual displays into electrotactile tongue stimulation. This cross-modal sensory stimulation activated their visual cortices. We now extend this finding by using transcranial magnetic stimulation to examine the perceptual correlates of training-induced plastic responses. We find that blind subjects proficient with the use of the tongue display unit report somatopicaily organized tactile sensations that are referred to the tongue when transcranial magnetic stimulation is applied over the occipital cortex. No such sensations were evoked in trained, blindfolded, seeing control subjects who performed the sensory substitution task equally well. These data show that the perceptual correlate of activity in a given cortical area reflects the characteristics of its novel sensory input source. [less ▲]

Detailed reference viewed: 26 (2 ULg)
Full Text
Peer Reviewed
See detailSleep after spatial learning promotes covert reorganization of brain activity
Orban, Pierre ULg; Rauchs, Géraldine; Balteau, Evelyne ULg et al

in Proceedings of the National Academy of Sciences of the United States of America (2006), 103(18), 7124-7129

Sleep promotes the integration of recently acquired spatial memories into cerebral networks for the long term. In this study, we examined how sleep deprivation hinders this consolidation process. Using ... [more ▼]

Sleep promotes the integration of recently acquired spatial memories into cerebral networks for the long term. In this study, we examined how sleep deprivation hinders this consolidation process. Using functional MRI, we mapped regional cerebral activity during place-finding navigation in a virtual town, immediately after learning and 3 days later, in subjects either allowed regular sleep (RS) or totally sleep-deprived (TSD) on the first posttraining night. At immediate and delayed retrieval, place-finding navigation elicited increased brain activity in an extended hippocamponeocortical network in both RS and TSD subjects. Behavioral performance was equivalent between groups. However, striatal navigation-related activity increased more at delayed retrieval in RS than in TSD subjects. Furthermore, correlations between striatal response and behavioral performance, as well as functional connectivity between the striatum and the hippocampus, were modulated by posttraining sleep. These data suggest that brain activity is restructured during sleep in such a way that navigation in the virtual environment, initially related to a hippocampus-dependent spatial strategy, becomes progressively contingent in part on a response-based strategy mediated by the striatum. Both neural strategies eventually relate to equivalent performance levels, indicating that covert reorganization of brain patterns underlying navigation after sleep is not necessarily accompanied by overt changes in behavior. [less ▲]

Detailed reference viewed: 21 (1 ULg)
Full Text
Peer Reviewed
See detailHigh-efficiency biolistic transformation of Chlamydomonas mitochondria can be used to insert mutations in complex I genes
Remacle, Claire ULg; Cardol, Pierre ULg; Coosemans, Nadine ULg et al

in Proceedings of the National Academy of Sciences of the United States of America (2006), 103(12), 4771-4776

Mitochondrial transformation of Chlamydomonas reinhardtii has been optimized by using a particle-gun device and cloned mitochondrial DNA or PCR fragments. A respiratory-deficient strain lacking a 1.2-kb ... [more ▼]

Mitochondrial transformation of Chlamydomonas reinhardtii has been optimized by using a particle-gun device and cloned mitochondrial DNA or PCR fragments. A respiratory-deficient strain lacking a 1.2-kb mitochondrial DNA region including the left telomere and part of the cob gene could be rescued as well as a double-frameshift mutant in the mitochondrial cox1 and nd1 genes. High transformation efficiency has been achieved (100-250 transformants per microgram of DNA), the best results being obtained with linearized plasmid DNA. Molecular analysis of the transformants suggests that the right telomere sequence can be copied to reconstruct the left telomere by recombination. In addition, both nondeleterious and deleterious mutations could be introduced. Myxothiazol-resistant transformants have been created by introducing a nucleotide substitution into the cob gene. Similarly, an in-frame deletion of 23 codons has been created in the nd4 mitochondrial gene of both the deleted and frameshift recipient strains. These 23 codons are believed to encode the first transmembrane segment of the ND4 protein. This Delta nd4 mutation causes a misassembly of complex 1, with the accumulation of a subcomplex that is 250-kDa smaller than the wild-type complex 1. The availability of efficient mitochondrial transformation in Chlamydomonas provides an invaluable tool for the study of mitochondrial biogenesis and, more specifically, for site-directed mutagenesis of mitochondrially encoded subunits of complex 1, of special interest because the yeast Saccharomyces cerevisiae, whose mitochondrial genome can be manipulated virtually at will, is lacking complex 1. [less ▲]

Detailed reference viewed: 33 (5 ULg)
Full Text
Peer Reviewed
See detailA northern glacial refugium for bank voles (Clethrionomys glareolus).
Kotlìk, Petr; Deffontaine Deurbroeck, Valérie ULg; Mascheretti, Silvia et al

in Proceedings of the National Academy of Sciences of the United States of America (2006), 103(40), 14860-14864

There is controversy and uncertainty on how far north there were glacial refugia for temperate species during the Pleistocene glaciations and in the extent of the contribution of such refugia to present ... [more ▼]

There is controversy and uncertainty on how far north there were glacial refugia for temperate species during the Pleistocene glaciations and in the extent of the contribution of such refugia to present-day populations. We examined these issues using phylogeographic analysis of a European woodland mammal, the bank vole (Clethrionomys glareolus). A Bayesian coalescence analysis indicates that a bank vole population survived the height of the last glaciation (≈25,000–10,000 years B.P.) in the vicinity of the Carpathians, a major central European mountain chain well north of the Mediterranean areas typically regarded as glacial refugia for temperate species. Parameter estimates from the fitted isolation with migration model show that the divergence of the Carpathian population started at least 22,000 years ago, and it was likely followed by only negligible immigration from adjacent regions, suggesting the persistence of bank voles in the Carpathians through the height of the last glaciation. On the contrary, there is clear evidence for gene flow out of the Carpathians, demonstrating the contribution of the Carpathian population to the colonization of Europe after the Pleistocene. These findings are consistent with data from animal and plant fossils recovered in the Carpathians and provide the clearest phylogeographic evidence to date of a northern glacial refugium for temperate species in Europe. [less ▲]

Detailed reference viewed: 32 (4 ULg)
Full Text
Peer Reviewed
See detailCoupling of cell migration with neurogenesis by proneural bHLH factors.
Ge, Weihong; He, Fei; Kim, Kevin J. et al

in Proceedings of the National Academy of Sciences of the United States of America (2006), 103(5), 1319-24

After cell birth, almost all neurons in the mammalian central nervous system migrate. It is unclear whether and how cell migration is coupled with neurogenesis. Here we report that proneural basic helix ... [more ▼]

After cell birth, almost all neurons in the mammalian central nervous system migrate. It is unclear whether and how cell migration is coupled with neurogenesis. Here we report that proneural basic helix-loop-helix (bHLH) transcription factors not only initiate neuronal differentiation but also potentiate cell migration. Mechanistically, proneural bHLH factors regulate the expression of genes critically involved in migration, including down-regulation of RhoA small GTPase and up-regulation of doublecortin and p35, which, in turn, modulate the actin and microtubule cytoskeleton assembly and enable newly generated neurons to migrate. In addition, we report that several DNA-binding-deficient proneural genes that fail to initiate neuronal differentiation still activate migration, whereas a different mutation of a proneural gene that causes a failure in initiating cell migration still leads to robust neuronal differentiation. Collectively, these data suggest that transcription programs for neurogenesis and migration are regulated by bHLH factors through partially distinct mechanisms. [less ▲]

Detailed reference viewed: 251 (12 ULg)
Full Text
Peer Reviewed
See detailProlactin/growth hormone-derived antiangiogenic peptides highlight a potential role of tilted peptides in angiogenesis
Nguyen, Ngoc-Quynh-Nhu ULg; Tabruyn, Sébastien ULg; Lins, Laurence ULg et al

in Proceedings of the National Academy of Sciences of the United States of America (2006), 103(39), 14319-14324

Angiogenesis is a crucial step in many pathologies, including tumor growth and metastasis. Here, we show that tilted peptides exert antiangiogenic activity. Tilted (or oblique-oriented) peptides are short ... [more ▼]

Angiogenesis is a crucial step in many pathologies, including tumor growth and metastasis. Here, we show that tilted peptides exert antiangiogenic activity. Tilted (or oblique-oriented) peptides are short peptides known to destabilize membranes and lipid cores and characterized by an asymmetric distribution of hydrophobic residues along the axis when helical. We have previously shown that 16-kDa fragments of the human prolactin/growth hormone (PRL/GH) family members are potent angiogenesis inhibitors. Here, we demonstrate that all these fragments possess a 14-aa sequence having the characteristics of a tilted peptide. The tilted peptides of human prolactin and human growth hormone induce endothelial cell apoptosis, inhibit endothelial cell proliferation, and inhibit capillary formation both in vitro and in vivo. These antiangiogenic effects are abolished when the peptides' hydrophobicity gradient is altered by mutation. We further demonstrate that the well known tilted peptides of simian immunodeficiency virus gp32 and Alzheimer's beta-amyloid peptide are also angiogenesis inhibitors. Taken together, these results point to a potential new role for tilted peptides in regulating angiogenesis. [less ▲]

Detailed reference viewed: 123 (24 ULg)
Full Text
Peer Reviewed
See detailAn electronic time scale in chemistry
Remacle, Françoise ULg; Levine, R. D.

in Proceedings of the National Academy of Sciences of the United States of America (2006), 103(18), 6793-6798

Ultrafast, subfemtosecond charge migration in small peptides is discussed on the basis of computational studies and compared with the selective bond dissociation after ionization as observed by Schlag and ... [more ▼]

Ultrafast, subfemtosecond charge migration in small peptides is discussed on the basis of computational studies and compared with the selective bond dissociation after ionization as observed by Schlag and Weinkauf. The reported relaxation could be probed in real time if the removal of an electron could be achieved on the attosecond time scale. Then the mean field seen by an electron would be changing rapidly enough to initiate the migration. Tyrosine-terminated tetrapeptides have a particularly fast charge migration where in < 1 fs the charge arrives at the other end. A femtosecond pulse can be used to observe the somewhat slower relaxation induced by correlation between electrons of different spins. A slower relaxation also is indicated when removing a deeper-lying valence electron. When a chromophoric amino acid is at one end of the peptide, the charge can migrate all along the peptide backbone up to the N end, but site-selective ionization is probably easier to detect for tryptophan than for tyrosine. [less ▲]

Detailed reference viewed: 17 (1 ULg)
Full Text
Peer Reviewed
See detailTransgenic engineering of male-specific muscular hypertrophy.
Pirottin, Dimitri ULg; Grobet, Luc ULg; Adamantidis, Antoine ULg et al

in Proceedings of the National Academy of Sciences of the United States of America (2005), 102(18), 6413-8

Using a two-step procedure involving insertional gene targeting and recombinase-mediated cassette exchange in ES cells, we have produced two lines of transgenic mice expressing a dominant-negative latency ... [more ▼]

Using a two-step procedure involving insertional gene targeting and recombinase-mediated cassette exchange in ES cells, we have produced two lines of transgenic mice expressing a dominant-negative latency-associated myostatin propeptide under control of the myosin light chain 1F promoter and 1/3 enhancer from the TSPY locus on the Y chromosome. Males of the corresponding lines are characterized by a 5-20% increase in skeletal muscle mass. This experiment demonstrates the feasibility of a more efficient cattle production system combining superior beef production abilities for bulls and dairy abilities for cows. [less ▲]

Detailed reference viewed: 31 (7 ULg)
Full Text
Peer Reviewed
See detailStructure of the light chain-binding domain of myosin V.
Terrak, Mohammed ULg; Rebowski, Grzegorz; Lu, Renne C et al

in Proceedings of the National Academy of Sciences of the United States of America (2005), 102(36), 12718-23

Myosin V is a double-headed molecular motor involved in organelle transport. Two distinctive features of this motor, processivity and the ability to take extended linear steps of approximately 36 nm along ... [more ▼]

Myosin V is a double-headed molecular motor involved in organelle transport. Two distinctive features of this motor, processivity and the ability to take extended linear steps of approximately 36 nm along the actin helical track, depend on its unusually long light chain-binding domain (LCBD). The LCBD of myosin V consists of six tandem IQ motifs, which constitute the binding sites for calmodulin (CaM) and CaM-like light chains. Here, we report the 2-A resolution crystal structure of myosin light chain 1 (Mlc1p) bound to the IQ2-IQ3 fragment of Myo2p, a myosin V from Saccharomyces cerevisiae. This structure, combined with FRET distance measurements between probes in various CaM-IQ complexes, comparative sequence analysis, and the previously determined structures of Mlc1p-IQ2 and Mlc1p-IQ4, allowed building a model of the LCBD of myosin V. The IQs of myosin V are distributed into three pairs. There appear to be specific cooperative interactions between light chains within each IQ pair, but little or no interaction between pairs, providing flexibility at their junctions. The second and third IQ pairs each present a light chain, whether CaM or a CaM-related molecule, bound in a noncanonical extended conformation in which the N-lobe does not interact with the IQ motif. The resulting free N-lobes may engage in protein-protein interactions. The extended conformation is characteristic of the single IQ of myosin VI and is common throughout the myosin superfamily. The model points to a prominent role of the LCBD in the function, regulation, and molecular interactions of myosin V. [less ▲]

Detailed reference viewed: 28 (9 ULg)
Full Text
Peer Reviewed
See detailActin-bound structures of Wiskott-Aldrich syndrome protein (WASP)-homology domain 2 and the implications for filament assembly.
Chereau, David; Kerff, Frédéric ULg; Graceffa, Philip et al

in Proceedings of the National Academy of Sciences of the United States of America (2005), 102(46), 16644-9

Wiskott-Aldrich syndrome protein (WASP)-homology domain 2 (WH2) is a small and widespread actin-binding motif. In the WASP family, WH2 plays a role in filament nucleation by Arp2/3 complex. Here we ... [more ▼]

Wiskott-Aldrich syndrome protein (WASP)-homology domain 2 (WH2) is a small and widespread actin-binding motif. In the WASP family, WH2 plays a role in filament nucleation by Arp2/3 complex. Here we describe the crystal structures of complexes of actin with the WH2 domains of WASP, WASP-family verprolin homologous protein, and WASP-interacting protein. Despite low sequence identity, WH2 shares structural similarity with the N-terminal portion of the actin monomer-sequestering thymosin beta domain (Tbeta). We show that both domains inhibit nucleotide exchange by targeting the cleft between actin subdomains 1 and 3, a common binding site for many unrelated actin-binding proteins. Importantly, WH2 is significantly shorter than Tbeta but binds actin with approximately 10-fold higher affinity. WH2 lacks a C-terminal extension that in Tbeta4 becomes involved in monomer sequestration by interfering with intersubunit contacts in F-actin. Owing to their shorter length, WH2 domains connected in tandem by short linkers can coexist with intersubunit contacts in F-actin and are proposed to function in filament nucleation by lining up actin subunits along a filament strand. The WH2-central region of WASP-family proteins is proposed to function in an analogous way by forming a special class of tandem repeats whose function is to line up actin and Arp2 during Arp2/3 nucleation. The structures also suggest a mechanism for how profilin-binding Pro-rich sequences positioned N-terminal to WH2 could feed actin monomers directly to WH2, thereby playing a role in filament elongation. [less ▲]

Detailed reference viewed: 40 (0 ULg)
Full Text
Peer Reviewed
See detailReplication-associated strand asymmetries in mammalian genomes: Toward detection of replication origins
Touchon, M.; Nicolay, Samuel ULg; Audit, B. et al

in Proceedings of the National Academy of Sciences of the United States of America (2005), 102(28), 9836-9841

In the course of evolution, mutations do not affect both strands of genomic DNA equally. This imbalance mainly results from asym- metric DNA mutation and repair processes associated with repli- cation and ... [more ▼]

In the course of evolution, mutations do not affect both strands of genomic DNA equally. This imbalance mainly results from asym- metric DNA mutation and repair processes associated with repli- cation and transcription. In prokaryotes, prevalence of G over C and T over A is frequently observed in the leading strand. The sign of the resulting TA and GC skews changes abruptly when crossing replication-origin and termination sites, producing characteristic step-like transitions. In mammals, transcription-coupled skews have been detected, but so far, no bias has been associated with replication. Here, analysis of intergenic and transcribed regions flanking experimentally identified human replication origins and the corresponding mouse and dog homologous regions demon- strates the existence of compositional strand asymmetries associ- ated with replication. Multiscale analysis of human genome skew profiles reveals numerous transitions that allow us to identify a set of 1,000 putative replication initiation zones. Around these puta- tive origins, the skew profile displays a characteristic jagged pattern also observed in mouse and dog genomes. We therefore propose that in mammalian cells, replication termination sites are randomly distributed between adjacent origins. Taken together, these analyses constitute a step toward genome-wide studies of replication mechanisms. [less ▲]

Detailed reference viewed: 17 (6 ULg)