References of "Proceedings of the National Academy of Sciences of the United States of America"
     in
Bookmark and Share    
Full Text
Peer Reviewed
See detailAn atypical member of the light-harvesting complex stress-related protein family modulates diatom responses to light.
Bailleul, Benjamin; Rogato, Alessandra; de Martino, Alessandra et al

in Proceedings of the National Academy of Sciences of the United States of America (2010), 107(42), 18214-9

Diatoms are prominent phytoplanktonic organisms that contribute around 40% of carbon assimilation in the oceans. They grow and perform optimally in variable environments, being able to cope with ... [more ▼]

Diatoms are prominent phytoplanktonic organisms that contribute around 40% of carbon assimilation in the oceans. They grow and perform optimally in variable environments, being able to cope with unpredictable changes in the amount and quality of light. The molecular mechanisms regulating diatom light responses are, however, still obscure. Using knockdown Phaeodactylum tricornutum transgenic lines, we reveal the key function of a member of the light-harvesting complex stress-related (LHCSR) protein family, denoted LHCX1, in modulation of excess light energy dissipation. In contrast to green algae, this gene is already maximally expressed in nonstressful light conditions and encodes a protein required for efficient light responses and growth. LHCX1 also influences natural variability in photoresponse, as evidenced in ecotypes isolated from different latitudes that display different LHCX1 protein levels. We conclude, therefore, that this gene plays a pivotal role in managing light responses in diatoms. [less ▲]

Detailed reference viewed: 29 (3 ULg)
Full Text
Peer Reviewed
See detailInformation-Theoretic Analysis of Phenotype Changes in Early Stages of Carcinogenesis
Remacle, Françoise ULg; Kravchenko-Balasha, N.; Leviztski, A. et al

in Proceedings of the National Academy of Sciences of the United States of America (2010), 107

Detailed reference viewed: 18 (1 ULg)
Full Text
Peer Reviewed
See detailMaximal Entropy Inference of Oncogenicity from Phosphorylation Signaling
Graeber, T. G.; Heath, J. R.; Skaggs, B. J. et al

in Proceedings of the National Academy of Sciences of the United States of America (2010), 107

Detailed reference viewed: 11 (0 ULg)
Full Text
Peer Reviewed
See detailAll-DNA finite-state automata with finite memory
Wang, Z. G.; Elbaz, J.; Remacle, Françoise ULg et al

in Proceedings of the National Academy of Sciences of the United States of America (2010), 107(51), 21996-22001

Detailed reference viewed: 21 (0 ULg)
Full Text
Peer Reviewed
See detailBrain plasticity related to the consolidation of motor sequence learning and motor adaptation
Debas, K.; Carrier, J.; Orban, Patricia ULg et al

in Proceedings of the National Academy of Sciences of the United States of America (2010), 107(41), 17839-44

This study aimed to investigate, through functional MRI (fMRI), the neuronal substrates associated with the consolidation process of two motor skills: motor sequence learning (MSL) and motor adaptation ... [more ▼]

This study aimed to investigate, through functional MRI (fMRI), the neuronal substrates associated with the consolidation process of two motor skills: motor sequence learning (MSL) and motor adaptation (MA). Four groups of young healthy individuals were assigned to either (i) a night/sleep condition, in which they were scanned while practicing a finger sequence learning task or an eight-target adaptation pointing task in the evening (test) and were scanned again 12 h later in the morning (retest) or (ii) a day/awake condition, in which they were scanned on the MSL or the MA tasks in the morning and were rescanned 12 h later in the evening. As expected and consistent with the behavioral results, the functional data revealed increased test-retest changes of activity in the striatum for the night/sleep group compared with the day/awake group in the MSL task. By contrast, the results of the MA task did not show any difference in test-retest activity between the night/sleep and day/awake groups. When the two MA task groups were combined, however, increased test-retest activity was found in lobule VI of the cerebellar cortex. Together, these findings highlight the presence of both functional and structural dissociations reflecting the off-line consolidation processes of MSL and MA. They suggest that MSL consolidation is sleep dependent and reflected by a differential increase of neural activity within the corticostriatal system, whereas MA consolidation necessitates either a period of daytime or sleep and is associated with increased neuronal activity within the corticocerebellar system. [less ▲]

Detailed reference viewed: 21 (4 ULg)
Full Text
Peer Reviewed
See detailImpact of diet in shaping gut microbiota revealed by a comparative study in children from Europe and Rural Africa
De Filippo, C.; Cavalieri, D.; Di Paola, M. et al

in Proceedings of the National Academy of Sciences of the United States of America (2010), 107(33), 14691-14696

Detailed reference viewed: 14 (0 ULg)
Full Text
Peer Reviewed
See detailImpaired respiration discloses the physiological significance of state transitions in Chlamydomonas.
Cardol, Pierre ULg; Alric, Jean; Girard-Bascou, Jacqueline et al

in Proceedings of the National Academy of Sciences of the United States of America (2009), 106(37), 15979-84

State transitions correspond to a major regulation process for photosynthesis, whereby chlorophyll protein complexes responsible for light harvesting migrate between photosystem II and photosystem I in ... [more ▼]

State transitions correspond to a major regulation process for photosynthesis, whereby chlorophyll protein complexes responsible for light harvesting migrate between photosystem II and photosystem I in response to changes in the redox poise of the intersystem electron carriers. Here we disclose their physiological significance in Chlamydomonas reinhardtii using a genetic approach. Using single and double mutants defective for state transitions and/or mitochondrial respiration, we show that photosynthetic growth, and therefore biomass production, critically depends on state transitions in respiratory-defective conditions. When extra ATP cannot be provided by respiration, enhanced photosystem I turnover elicited by transition to state 2 is required for photosynthetic activity. Concomitant impairment of state transitions and respiration decreases the overall yield of photosynthesis, ultimately leading to reduced fitness. We thus provide experimental evidence that the combined energetic contributions of state transitions and respiration are required for efficient carbon assimilation in this alga. [less ▲]

Detailed reference viewed: 37 (10 ULg)
Full Text
Peer Reviewed
See detailA nonsense mutation in cGMP-dependent type II protein kinase (PRKG2) causes dwarfism in American Angus cattle.
Koltes, James E; Mishra, Bishnu P; Kumar, Dinesh et al

in Proceedings of the National Academy of Sciences of the United States of America (2009), 106(46), 19250-5

Historically, dwarfism was the major genetic defect in U.S. beef cattle. Aggressive culling and sire testing were used to minimize its prevalence; however, neither of these practices can eliminate a ... [more ▼]

Historically, dwarfism was the major genetic defect in U.S. beef cattle. Aggressive culling and sire testing were used to minimize its prevalence; however, neither of these practices can eliminate a recessive genetic defect. We assembled a 4-generation pedigree to identify the mutation underlying dwarfism in American Angus cattle. An adaptation of the Elston-Steward algorithm was used to overcome small pedigree size and missing genotypes. The dwarfism locus was fine-mapped to BTA6 between markers AFR227 and BM4311. Four candidate genes were sequenced, revealing a nonsense mutation in exon 15 of cGMP-dependant type II protein kinase (PRKG2). This C/T transition introduced a stop codon (R678X) that truncated 85 C-terminal amino acids, including a large portion of the kinase domain. Of the 75 mutations discovered in this region, only this mutation was 100% concordant with the recessive pattern of inheritance in affected and carrier individuals (log of odds score = 6.63). Previous research has shown that PRKG2 regulates SRY (sex-determining region Y) box 9 (SOX9)-mediated transcription of collagen 2 (COL2). We evaluated the ability of wild-type (WT) or R678X PRKG2 to regulate COL2 expression in cell culture. Real-time PCR results confirmed that COL2 is overexpressed in cells that overexpressed R678X PRKG2 as compared with WT PRKG2. Furthermore, COL2 and COL10 mRNA expression was increased in dwarf cattle compared with unaffected cattle. These experiments indicate that the R678X mutation is functional, resulting in a loss of PRKG2 regulation of COL2 and COL10 mRNA expression. Therefore, we present PRKG2 R678X as a causative mutation for dwarfism cattle. [less ▲]

Detailed reference viewed: 4 (0 ULg)
Full Text
Peer Reviewed
See detailSeizures, sensorineural deafness, ataxia, mental retardation, and electrolyte imbalance (SeSAME syndrome) caused by mutations in KCNJ10.
Scholl, Ute I; Choi, Murim; Liu, Tiewen et al

in Proceedings of the National Academy of Sciences of the United States of America (2009), 106(14), 5842-7

We describe members of 4 kindreds with a previously unrecognized syndrome characterized by seizures, sensorineural deafness, ataxia, mental retardation, and electrolyte imbalance (hypokalemia, metabolic ... [more ▼]

We describe members of 4 kindreds with a previously unrecognized syndrome characterized by seizures, sensorineural deafness, ataxia, mental retardation, and electrolyte imbalance (hypokalemia, metabolic alkalosis, and hypomagnesemia). By analysis of linkage we localize the putative causative gene to a 2.5-Mb segment of chromosome 1q23.2-23.3. Direct DNA sequencing of KCNJ10, which encodes an inwardly rectifying K(+) channel, identifies previously unidentified missense or nonsense mutations on both alleles in all affected subjects. These mutations alter highly conserved amino acids and are absent among control chromosomes. Many of these mutations have been shown to cause loss of function in related K(+) channels. These findings demonstrate that loss-of-function mutations in KCNJ10 cause this syndrome, which we name SeSAME. KCNJ10 is expressed in glia in the brain and spinal cord, where it is believed to take up K(+) released by neuronal repolarization, in cochlea, where it is involved in the generation of endolymph, and on the basolateral membrane in the distal nephron. We propose that KCNJ10 is required in the kidney for normal salt reabsorption in the distal convoluted tubule because of the need for K(+) recycling across the basolateral membrane to enable normal activity of the Na(+)-K(+)-ATPase; loss of this function accounts for the observed electrolyte defects. Mice deficient for KCNJ10 show a related phenotype with seizures, ataxia, and hearing loss, further supporting KCNJ10's role in this syndrome. These findings define a unique human syndrome, and establish the essential role of basolateral K(+) channels in renal electrolyte homeostasis. [less ▲]

Detailed reference viewed: 11 (2 ULg)
Full Text
Peer Reviewed
See detailProtein Phosphatase 2a Controls The Activity Of Histone Deacetylase 7 During T Cell Apoptosis And Angiogenesis
Martin, Maud ULg; Potente, M.; Janssens, V. et al

in Proceedings of the National Academy of Sciences of the United States of America (2008), 105(12), 4727-4732

Detailed reference viewed: 37 (14 ULg)
Full Text
Peer Reviewed
See detailEndocannabinoid signaling controls pyramidal cell specification and long-range axon patterning.
Mulder, Jan; Aguado, Tania; Keimpema, Erik et al

in Proceedings of the National Academy of Sciences of the United States of America (2008), 105(25), 8760-5

Endocannabinoids (eCBs) have recently been identified as axon guidance cues shaping the connectivity of local GABAergic interneurons in the developing cerebrum. However, eCB functions during pyramidal ... [more ▼]

Endocannabinoids (eCBs) have recently been identified as axon guidance cues shaping the connectivity of local GABAergic interneurons in the developing cerebrum. However, eCB functions during pyramidal cell specification and establishment of long-range axonal connections are unknown. Here, we show that eCB signaling is operational in subcortical proliferative zones from embryonic day 12 in the mouse telencephalon and controls the proliferation of pyramidal cell progenitors and radial migration of immature pyramidal cells. When layer patterning is accomplished, developing pyramidal cells rely on eCB signaling to initiate the elongation and fasciculation of their long-range axons. Accordingly, CB(1) cannabinoid receptor (CB(1)R) null and pyramidal cell-specific conditional mutant (CB(1)R(f/f,NEX-Cre)) mice develop deficits in neuronal progenitor proliferation and axon fasciculation. Likewise, axonal pathfinding becomes impaired after in utero pharmacological blockade of CB(1)Rs. Overall, eCBs are fundamental developmental cues controlling pyramidal cell development during corticogenesis. [less ▲]

Detailed reference viewed: 46 (8 ULg)
Full Text
Peer Reviewed
See detailAn original adaptation of photosynthesis in the marine green alga Ostreococcus.
Cardol, Pierre ULg; Bailleul, Benjamin; Rappaport, Fabrice et al

in Proceedings of the National Academy of Sciences of the United States of America (2008), 105(22), 7881-6

Adaptation of photosynthesis in marine environment has been examined in two strains of the green, picoeukaryote Ostreococcus: OTH95, a surface/high-light strain, and RCC809, a deep-sea/low-light strain ... [more ▼]

Adaptation of photosynthesis in marine environment has been examined in two strains of the green, picoeukaryote Ostreococcus: OTH95, a surface/high-light strain, and RCC809, a deep-sea/low-light strain. Differences between the two strains include changes in the light-harvesting capacity, which is lower in OTH95, and in the photoprotection capacity, which is enhanced in OTH95. Furthermore, RCC809 has a reduced maximum rate of O(2) evolution, which is limited by its decreased photosystem I (PSI) level, a possible adaptation to Fe limitation in the open oceans. This decrease is, however, accompanied by a substantial rerouting of the electron flow to establish an H(2)O-to-H(2)O cycle, involving PSII and a potential plastid plastoquinol terminal oxidase. This pathway bypasses electron transfer through the cytochrome b(6)f complex and allows the pumping of "extra" protons into the thylakoid lumen. By promoting the generation of a large DeltapH, it facilitates ATP synthesis and nonphotochemical quenching when RCC809 cells are exposed to excess excitation energy. We propose that the diversion of electrons to oxygen downstream of PSII, but before PSI, reflects a common and compulsory strategy in marine phytoplankton to bypass the constraints imposed by light and/or nutrient limitation and allow successful colonization of the open-ocean marine environment. [less ▲]

Detailed reference viewed: 49 (4 ULg)
Full Text
Peer Reviewed
See detailCrystal structure and activity of Bacillus subtilis YoaJ (EXLX1), a bacterial expansin that promotes root colonization.
Kerff, Frédéric ULg; Amoroso, Ana Maria ULg; Herman, Raphaël ULg et al

in Proceedings of the National Academy of Sciences of the United States of America (2008), 105(44), 16876-81

We solved the crystal structure of a secreted protein, EXLX1, encoded by the yoaJ gene of Bacillus subtilis. Its structure is remarkably similar to that of plant beta-expansins (group 1 grass pollen ... [more ▼]

We solved the crystal structure of a secreted protein, EXLX1, encoded by the yoaJ gene of Bacillus subtilis. Its structure is remarkably similar to that of plant beta-expansins (group 1 grass pollen allergens), consisting of 2 tightly packed domains (D1, D2) with a potential polysaccharide-binding surface spanning the 2 domains. Domain D1 has a double-psi beta-barrel fold with partial conservation of the catalytic site found in family 45 glycosyl hydrolases and in the MltA family of lytic transglycosylases. Domain D2 has an Ig-like fold similar to group 2/3 grass pollen allergens, with structural features similar to a type A carbohydrate-binding domain. EXLX1 bound to plant cell walls, cellulose, and peptidoglycan, but it lacked lytic activity against a variety of plant cell wall polysaccharides and peptidoglycan. EXLX1 promoted plant cell wall extension similar to, but 10 times weaker than, plant beta-expansins, which synergistically enhanced EXLX1 activity. Deletion of the gene encoding EXLX1 did not affect growth or peptidoglycan composition of B. subtilis in liquid medium, but slowed lysis upon osmotic shock and greatly reduced the ability of the bacterium to colonize maize roots. The presence of EXLX1 homologs in a small but diverse set of plant pathogens further supports a role in plant-bacterial interactions. Because plant expansins have proved difficult to express in active form in heterologous systems, the discovery of a bacterial homolog opens the door for detailed structural studies of expansin function. [less ▲]

Detailed reference viewed: 107 (10 ULg)
Full Text
Peer Reviewed
See detailInositol trisphosphate 3-kinase B (InsP3KB) as a physiological modulator of myelopoiesis
Jia, Y.; Loison, F.; Erneux, C. et al

in Proceedings of the National Academy of Sciences of the United States of America (2008), 105

Inositol trisphosphate 3-kinase B (InsP3KB) belongs to a family of kinases that convert inositol 1,4,5-trisphosphate (Ins(1,4,5)P3 or IP3) to inositol 1,3,4,5-tetrakisphosphate (Ins(1,3,4,5)P4). Previous ... [more ▼]

Inositol trisphosphate 3-kinase B (InsP3KB) belongs to a family of kinases that convert inositol 1,4,5-trisphosphate (Ins(1,4,5)P3 or IP3) to inositol 1,3,4,5-tetrakisphosphate (Ins(1,3,4,5)P4). Previous studies have shown that disruption of InsP3KB leads to impaired T cell and B cell development as well as hyperactivation of neutrophils. Here, we demonstrate that InsP3KB is also a physiological modulator of myelopoiesis. The InsP3KB gene is expressed in all hematopoietic stem/progenitor cell populations. In InsP3KB null mice, the bone marrow granulocyte monocyte progenitor (GMP) population was expanded, and GMP cells proliferated significantly faster. Consequently, neutrophil production in the bone marrow was enhanced, and the peripheral blood neutrophil count was also substantially elevated in these mice. These effects might be due to enhancement of PtdIns(3,4,5)P3/Akt signaling in the InsP3KB null cells. Phosphorylation of cell cycle-inhibitory protein p21(cip1), one of the downstream targets of Akt, was augmented, which can lead to the suppression of the cell cycle-inhibitory effect of p21 [less ▲]

Detailed reference viewed: 25 (8 ULg)
Full Text
Peer Reviewed
See detailSpontaneous neural activity during human slow wave sleep.
Dang Vu, Thien Thanh ULg; Schabus, Manuel ULg; Desseilles, Martin ULg et al

in Proceedings of the National Academy of Sciences of the United States of America (2008), 105(39), 15160-5

Slow wave sleep (SWS) is associated with spontaneous brain oscillations that are thought to participate in sleep homeostasis and to support the processing of information related to the experiences of the ... [more ▼]

Slow wave sleep (SWS) is associated with spontaneous brain oscillations that are thought to participate in sleep homeostasis and to support the processing of information related to the experiences of the previous awake period. At the cellular level, during SWS, a slow oscillation (<1 Hz) synchronizes firing patterns in large neuronal populations and is reflected on electroencephalography (EEG) recordings as large-amplitude, low-frequency waves. By using simultaneous EEG and event-related functional magnetic resonance imaging (fMRI), we characterized the transient changes in brain activity consistently associated with slow waves (>140 microV) and delta waves (75-140 microV) during SWS in 14 non-sleep-deprived normal human volunteers. Significant increases in activity were associated with these waves in several cortical areas, including the inferior frontal, medial prefrontal, precuneus, and posterior cingulate areas. Compared with baseline activity, slow waves are associated with significant activity in the parahippocampal gyrus, cerebellum, and brainstem, whereas delta waves are related to frontal responses. No decrease in activity was observed. This study demonstrates that SWS is not a state of brain quiescence, but rather is an active state during which brain activity is consistently synchronized to the slow oscillation in specific cerebral regions. The partial overlap between the response pattern related to SWS waves and the waking default mode network is consistent with the fascinating hypothesis that brain responses synchronized by the slow oscillation restore microwake-like activity patterns that facilitate neuronal interactions. [less ▲]

Detailed reference viewed: 132 (27 ULg)
Full Text
Peer Reviewed
See detailA type II NAD(P)H dehydrogenase mediates light-independent plastoquinone reduction in the chloroplast of Chlamydomonas
Jans, Frédéric ULg; Mignolet, Emmanuel ULg; Houyoux, Pierre-Alain et al

in Proceedings of the National Academy of Sciences of the United States of America (2008), 105(51), 20546-51

In photosynthetic eukaryotes, nonphotochemical plastoquinone (PQ) reduction is important for the regulation of photosynthetic electron flow. In green microalgae where this process has been demonstrated ... [more ▼]

In photosynthetic eukaryotes, nonphotochemical plastoquinone (PQ) reduction is important for the regulation of photosynthetic electron flow. In green microalgae where this process has been demonstrated, the chloroplastic enzyme that catalyses nonphotochemical PQ reduction has not been identified yet. Here, we show by an RNA interference (RNAi) approach that the NDA2 gene, belonging to a type II NAD(P)H dehydrogenases family in the green microalga Chlamydomonas reinhardtii, encodes a chloroplastic dehydrogenase that functions to reduce PQ nonphotochemically in this alga. Using a specific antibody, we show that the Nda2 protein is localized in chloroplasts of wild-type cells and is absent in two Nda2-RNAi cell lines. In both mutant cell lines, nonphotochemical PQ reduction is severely affected, as indicated by altered chlorophyll fluorescence transients after saturating illumination. Compared with wild type, change in light excitation distribution between photosystems ('state transition') upon inhibition of mitochondrial electron transport is strongly impaired in transformed cells because of inefficient PQ reduction. Furthermore, the amount of hydrogen produced by Nda2-RNAi cells under sulfur deprivation is substantially decreased compared with wild type, which supports previous assumptions that endogenous substrates serve as source of electrons for hydrogen formation. These results demonstrate the importance of Nda2 for nonphotochemical PQ reduction and associated processes in C. reinhardtii. [less ▲]

Detailed reference viewed: 88 (37 ULg)
Full Text
Peer Reviewed
See detailBaseline brain activity fluctuations predict somatosensory perception in humans
Boly, Mélanie ULg; Balteau, Evelyne ULg; Schnakers, Caroline ULg et al

in Proceedings of the National Academy of Sciences of the United States of America (2007), 104(29), 12187-12192

In perceptual experiments, within-individual fluctuations in perception are observed across multiple presentations of the same stimuli, a phenomenon that remains only partially understood. Here, by means ... [more ▼]

In perceptual experiments, within-individual fluctuations in perception are observed across multiple presentations of the same stimuli, a phenomenon that remains only partially understood. Here, by means of thulium-yttrium/aluminum- garnet laser and event-related functional MRI, we tested whether variability in perception of identical stimuli relates to differences in prestimulus, baseline brain activity. Results indicate a positive relationship between conscious perception of low-intensity somatosensory stimuli and immediately preceding levels of baseline activity in medial thalamus and the lateral frontoparietal network, respectively, which are thought to relate to vigilance and "external monitoring." Conversely, there was a negative correlation between subsequent reporting of conscious perception and baseline activity in a set of regions encompassing posterior cingulate/ precuneus and temporoparietal cortices, possibly relating to introspection and self-oriented processes. At nociceptive levels of stimulation, pain-intensity ratings positively correlated with baseline fluctuations in anterior cingulate cortex in an area known to be involved in the affective dimension of pain. These results suggest that baseline brain-activity fluctuations may profoundly modify our conscious perception of the external world. [less ▲]

Detailed reference viewed: 23 (4 ULg)
Full Text
Peer Reviewed
See detailTransgenic LacZ under control of Hec-6st regulatory sequences recapitulates endogenous gene expression on high endothelial venules.
Liao, Shan; Bentley, Kevin; Lebrun, Marielle ULg et al

in Proceedings of the National Academy of Sciences of the United States of America (2007), 104(11), 4577-82

Hec-6st is a highly specific high endothelial venule (HEV) gene that is crucial for regulating lymphocyte homing to lymph nodes (LN). The enzyme is also expressed in HEV-like vessels in tertiary lymphoid ... [more ▼]

Hec-6st is a highly specific high endothelial venule (HEV) gene that is crucial for regulating lymphocyte homing to lymph nodes (LN). The enzyme is also expressed in HEV-like vessels in tertiary lymphoid organs that form in chronic inflammation in autoimmunity, graft rejection, and microbial infection. Understanding the molecular nature of Hec-6st regulation is crucial for elucidating its function in development and disease. However, studies of HEV are limited because of the difficulties in isolating and maintaining the unique characteristics of these vessels in vitro. The novel pClasper yeast homologous recombination technique was used to isolate from a BAC clone a 60-kb DNA fragment that included the Hec-6st (Chst4) gene with flanking sequences. Transgenic mice were generated with the beta-galactosidase (LacZ) reporter gene inserted in-frame in the exon II of Hec-6st within the isolated BAC DNA fragment. LacZ was expressed specifically on HEV in LN, as indicated by its colocalization with peripheral node vascular addressin. LacZ was increased in nasal-associated lymphoid tissue during development and was reduced in LN and nasal-associated lymphoid tissue by LTbetaR-Ig (lymphotoxin-beta receptor human Ig fusion protein) treatment in a manner identical to the endogenous gene. The transgene was expressed at high levels in lymphoid accumulations with characteristics of tertiary lymphoid organs in the salivary glands of aged mice. Thus, the Hec-6s-LacZ construct faithfully reproduces Hec-6st tissue-specific expression and can be used in further studies to drive expression of reporter or effector genes, which could visualize or inhibit HEV in autoimmunity. [less ▲]

Detailed reference viewed: 8 (0 ULg)
Full Text
Peer Reviewed
See detailHemodynamic cerebral correlates of sleep spindles during human non-rapid eye movement sleep.
Schabus, Manuel ULg; Dang Vu, Thien Thanh ULg; Albouy, Geneviève ULg et al

in Proceedings of the National Academy of Sciences of the United States of America (2007), 104(32), 13164-9

In humans, some evidence suggests that there are two different types of spindles during sleep, which differ by their scalp topography and possibly some aspects of their regulation. To test for the ... [more ▼]

In humans, some evidence suggests that there are two different types of spindles during sleep, which differ by their scalp topography and possibly some aspects of their regulation. To test for the existence of two different spindle types, we characterized the activity associated with slow (11-13 Hz) and fast (13-15 Hz) spindles, identified as discrete events during non-rapid eye movement sleep, in non-sleep-deprived human volunteers, using simultaneous electroencephalography and functional MRI. An activation pattern common to both spindle types involved the thalami, paralimbic areas (anterior cingulate and insular cortices), and superior temporal gyri. No thalamic difference was detected in the direct comparison between slow and fast spindles although some thalamic areas were preferentially activated in relation to either spindle type. Beyond the common activation pattern, the increases in cortical activity differed significantly between the two spindle types. Slow spindles were associated with increased activity in the superior frontal gyrus. In contrast, fast spindles recruited a set of cortical regions involved in sensorimotor processing, as well as the mesial frontal cortex and hippocampus. The recruitment of partially segregated cortical networks for slow and fast spindles further supports the existence of two spindle types during human non-rapid eye movement sleep, with potentially different functional significance. [less ▲]

Detailed reference viewed: 72 (12 ULg)
Full Text
Peer Reviewed
See detailSleep transforms the cerebral trace of declarative memories
Gais, Steffen; Albouy, Geneviève ULg; Boly, Mélanie ULg et al

in Proceedings of the National Academy of Sciences of the United States of America (2007), 104(47), 18778-18783

After encoding, memory traces are initially fragile and have to be reinforced to become permanent. The initial steps of this process occur at a cellular level within minutes or hours. Besides this rapid ... [more ▼]

After encoding, memory traces are initially fragile and have to be reinforced to become permanent. The initial steps of this process occur at a cellular level within minutes or hours. Besides this rapid synaptic consolidation, systems consolidation occurs within a time frame of days to years. For declarative memory, the latter is presumed to rely on an interaction between different brain regions, in particular the hippocampus and the medial prefrontal cortex (mPFC). Specifically, sleep has been proposed to provide a setting that supports such systems consolidation processes, leading to a transfer and perhaps transformation of memories. Using functional MRI, we show that postlearning sleep enhances hippocampal responses during recall of word pairs 48 h after learning, indicating intrahippocampal memory processing during sleep. At the same time, sleep induces a memory-related functional connectivity between the hippocampus and the mPFC. Six months after learning, memories activated the mPFC more strongly when they were encoded before sleep, showing that sleep leads to long-lasting changes in the representation of memories on a systems level. [less ▲]

Detailed reference viewed: 23 (2 ULg)