References of "Nature"
     in
Bookmark and Share    
Full Text
Peer Reviewed
See detaila complete insect from the Late Devonian period - supplementary information
Garrouste, Romain; Clément, Gaël; Nel, Patricia et al

in Nature (2012)

Detailed reference viewed: 39 (5 ULg)
Full Text
Peer Reviewed
See detailFood safety body is bound to draw fire
Hendrickx, Kim ULg; Penders, Bart

in Nature (2012), 485(31 May 2012), 582

Detailed reference viewed: 43 (9 ULg)
Full Text
Peer Reviewed
See detailDBIRD complex integrates alternative mRNA splicing with RNA polymerase II transcript elongation
Close, Pierre ULg; East, Phil; Svejstrup, Barbara et al

in Nature (2012)

Alternative messenger RNA splicing is the main reason that vast mammalian proteomic complexity can be achieved with a limited number of genes. Splicing is physically and functionally coupled to ... [more ▼]

Alternative messenger RNA splicing is the main reason that vast mammalian proteomic complexity can be achieved with a limited number of genes. Splicing is physically and functionally coupled to transcription, and is greatly affected by the rate of transcript elongation1–3. As the nascent pre-mRNA emerges from transcribing RNA polymerase II (RNAPII), it is assembled into a messenger ribonucleoprotein (mRNP) particle; this is the functional form of the nascent pre-mRNA and determines the fate of the mature transcript4. However, factors that connect the transcribing polymerase with the mRNP particle and help to integrate transcript elongation with mRNA splicing remain unclear. Here we characterize the human interactome of chromatin-associated mRNP particles. This led us to identify deleted in breast cancer 1 (DBC1) and ZNF326 (which we call ZNF-protein interacting with nuclear mRNPs and DBC1 (ZIRD)) as subunits of a novel protein complex—named DBIRD—that binds directly to RNAPII. DBIRD regulates alternative splicing of a large set of exons embedded in (A 1 T)-rich DNA, and is present at the affected exons. RNAinterference- mediated DBIRD depletion results in region-specific decreases in transcript elongation, particularly across areas encompassing affected exons. Together, these data indicate that the DBIRD complex acts at the interface between mRNP particles and RNAPII, integrating transcript elongation with the regulation of alternative splicing. [less ▲]

Detailed reference viewed: 191 (31 ULg)
Full Text
Peer Reviewed
See detailSerial translocation by means of circular intermediates underlies colour sidedness in cattle.
Durkin, Keith ULg; Coppieters, Wouter ULg; Drogemuller, Cord et al

in Nature (2012), 482(7383), 81-4

Colour sidedness is a dominantly inherited phenotype of cattle characterized by the polarization of pigmented sectors on the flanks, snout and ear tips. It is also referred to as 'lineback' or 'witrik ... [more ▼]

Colour sidedness is a dominantly inherited phenotype of cattle characterized by the polarization of pigmented sectors on the flanks, snout and ear tips. It is also referred to as 'lineback' or 'witrik' (which means white back), as colour-sided animals typically display a white band along their spine. Colour sidedness is documented at least since the Middle Ages and is presently segregating in several cattle breeds around the globe, including in Belgian blue and brown Swiss. Here we report that colour sidedness is determined by a first allele on chromosome 29 (Cs(29)), which results from the translocation of a 492-kilobase chromosome 6 segment encompassing KIT to chromosome 29, and a second allele on chromosome 6 (Cs(6)), derived from the first by repatriation of fused 575-kilobase chromosome 6 and 29 sequences to the KIT locus. We provide evidence that both translocation events involved circular intermediates. This is the first example, to our knowledge, of a phenotype determined by homologous yet non-syntenic alleles that result from a novel copy-number-variant-generating mechanism. [less ▲]

Detailed reference viewed: 127 (61 ULg)
Full Text
Peer Reviewed
See detailFast core rotation in red-giant stars as revealed by gravity-dominated mixed modes
Beck, Paul G; Montalban Iglesias, Josefa ULg; Kallinger, Thomas et al

in Nature (2012), 481

When the core hydrogen is exhausted during stellar evolution, the central region of a star contracts and the outer envelope expands and cools, giving rise to a red giant. Convection takes place over much ... [more ▼]

When the core hydrogen is exhausted during stellar evolution, the central region of a star contracts and the outer envelope expands and cools, giving rise to a red giant. Convection takes place over much of the star's radius. Conservation of angular momentum requires that the cores of these stars rotate faster than their envelopes; indirect evidence supports this. Information about the angular-momentum distribution is inaccessible to direct observations, but it can be extracted from the effect of rotation on oscillation modes that probe the stellar interior. Here we report an increasing rotation rate from the surface of the star to the stellar core in the interiors of red giants, obtained using the rotational frequency splitting of recently detected `mixed modes'. By comparison with theoretical stellar models, we conclude that the core must rotate at least ten times faster than the surface. This observational result confirms the theoretical prediction of a steep gradient in the rotation profile towards the deep stellar interior. [less ▲]

Detailed reference viewed: 29 (8 ULg)
Full Text
Peer Reviewed
See detailA compact system of small planets around a former red giant star
Charpinet, Stéphane; Fontaine, Gilles; Brassard, Pierre et al

in Nature (2011), 480

Planets that orbit their parent star at less than about one astronomical unit (1AU is the Earth-Sun distance) are expected to be engulfed when the star becomes a red giant. Previous observations have ... [more ▼]

Planets that orbit their parent star at less than about one astronomical unit (1AU is the Earth-Sun distance) are expected to be engulfed when the star becomes a red giant. Previous observations have revealed the existence of post-red-giant host stars with giant planets orbiting as close as 0.116AU or with brown dwarf companions in tight orbits, showing that these bodies can survive engulfment. What has remained unclear is whether planets can be dragged deeper into the red-giant envelope without being disrupted and whether the evolution of the parent star itself could be affected. Here we report the presence of two nearly Earth-sized bodies orbiting the post-red-giant, hot B subdwarf star KIC 05807616 at distances of 0.0060 and 0.0076AU, with orbital periods of 5.7625 and 8.2293 hours, respectively. These bodies probably survived deep immersion in the former red-giant envelope. They may be the dense cores of evaporated giant planets that were transported closer to the star during the engulfment and triggered the mass loss necessary for the formation of the hot B subdwarf, which might also explain how some stars of this type did not form in binary systems. [less ▲]

Detailed reference viewed: 47 (6 ULg)
Full Text
Peer Reviewed
See detailA Pluto-like radius and a high albedo for the dwarf planet Eris from an occultation
Sicardy, B.; Ortiz, J. L.; Assafin, M. et al

in Nature (2011), 478

The dwarf planet Eris is a trans-Neptunian object with an orbital eccentricity of 0.44, an inclination of 44 degrees and a surface composition very similar to that of Pluto. It resides at present at 95.7 ... [more ▼]

The dwarf planet Eris is a trans-Neptunian object with an orbital eccentricity of 0.44, an inclination of 44 degrees and a surface composition very similar to that of Pluto. It resides at present at 95.7 astronomical units (1AU is the Earth-Sun distance) from Earth, near its aphelion and more than three times farther than Pluto. Owing to this great distance, measuring its size or detecting a putative atmosphere is difficult. Here we report the observation of a multi-chord stellar occultation by Eris on 6 November 2010 UT. The event is consistent with a spherical shape for Eris, with radius 1,163+/-6kilometres, density 2.52+/-0.05 grams per cm[SUP]3[/SUP] and a high visible geometric albedo, . No nitrogen, argon or methane atmospheres are detected with surface pressure larger than ~1nanobar, about 10,000 times more tenuous than Pluto's present atmosphere. As Pluto's radius is estimated to be between 1,150 and 1,200 kilometres, Eris appears as a Pluto twin, with a bright surface possibly caused by a collapsed atmosphere, owing to its cold environment. We anticipate that this atmosphere may periodically sublimate as Eris approaches its perihelion, at 37.8 astronomical units from the Sun. [less ▲]

Detailed reference viewed: 22 (7 ULg)
Full Text
Peer Reviewed
See detailTransient ferromagnetic-like state mediating ultrafast reversal of antiferromagnetically coupled spins
Radu, I.; Vahaplar, K.; Stamm, C. et al

in NATURE (2011), 472(7342), 205-208

Ferromagnetic or antiferromagnetic spin ordering is governed by the exchange interaction, the strongest force in magnetism(1-4). Understanding spin dynamics in magnetic materials is an issue of crucial ... [more ▼]

Ferromagnetic or antiferromagnetic spin ordering is governed by the exchange interaction, the strongest force in magnetism(1-4). Understanding spin dynamics in magnetic materials is an issue of crucial importance for progress in information processing and recording technology. Usually the dynamics are studied by observing the collective response of exchange-coupled spins, that is, spin resonances, after an external perturbation by a pulse of magnetic field, current or light. The periods of the corresponding resonances range from one nanosecond for ferromagnets down to one picosecond for antiferromagnets. However virtually nothing is known about the behaviour of spins in a magnetic material after being excited on a timescale faster than that corresponding to the exchange interaction (10-100 fs), that is, in a non-adiabatic way. Here we use the element-specific technique X-ray magnetic circular dichroism to study spin reversal in GdFeCo that is optically excited on a timescale pertinent to the characteristic time of the exchange interaction between Gd and Fe spins. We unexpectedly find that the ultrafast spin reversal in this material, where spins are coupled antiferromagnetically, occurs by way of a transient ferromagnetic-like state. Following the optical excitation, the net magnetizations of the Gd and Fe sublattices rapidly collapse, switch their direction and rebuild their net magnetic moments at substantially different timescales; the net magnetic moment of the Gd sublattice is found to reverse within 1.5 picoseconds, which is substantially slower than the Fe reversal time of 300 femtoseconds. Consequently, a transient state characterized by a temporary parallel alignment of the net Gd and Fe moments emerges, despite their ground-state antiferromagnetic coupling. These surprising observations, supported by atomistic simulations, provide a concept for the possibility of manipulating magnetic order on the timescale of the exchange interaction. [less ▲]

Detailed reference viewed: 8 (0 ULg)
Full Text
Peer Reviewed
See detailGravity modes as a way to distinguish between hydrogen- and helium-burning red giant stars
Bedding, Timothy R; Mosser, Benoit; Huber, Daniel et al

in Nature (2011), 471

Red giants are evolved stars that have exhausted the supply of hydrogen in their cores and instead burn hydrogen in a surrounding shell. Once a red giant is sufficiently evolved, the helium in the core ... [more ▼]

Red giants are evolved stars that have exhausted the supply of hydrogen in their cores and instead burn hydrogen in a surrounding shell. Once a red giant is sufficiently evolved, the helium in the core also undergoes fusion. Outstanding issues in our understanding of red giants include uncertainties in the amount of mass lost at the surface before helium ignition and the amount of internal mixing from rotation and other processes. Progress is hampered by our inability to distinguish between red giants burning helium in the core and those still only burning hydrogen in a shell. Asteroseismology offers a way forward, being a powerful tool for probing the internal structures of stars using their natural oscillation frequencies. Here we report observations of gravity-mode period spacings in red giants that permit a distinction between evolutionary stages to be made. We use high-precision photometry obtained by the Kepler spacecraft over more than a year to measure oscillations in several hundred red giants. We find many stars whose dipole modes show sequences with approximately regular period spacings. These stars fall into two clear groups, allowing us to distinguish unambiguously between hydrogen-shell-burning stars (period spacing mostly ~50seconds) and those that are also burning helium (period spacing ~100 to 300 seconds). [less ▲]

Detailed reference viewed: 25 (4 ULg)
Full Text
Peer Reviewed
See detailThe auroral footprint of Enceladus on Saturn
Pryor, Wayne R; Rymer, Abigail M; Mitchell, Donald G et al

in Nature (2011), 472

Although there are substantial differences between the magnetospheres of Jupiter and Saturn, it has been suggested that cryovolcanic activity at Enceladus could lead to electrodynamic coupling between ... [more ▼]

Although there are substantial differences between the magnetospheres of Jupiter and Saturn, it has been suggested that cryovolcanic activity at Enceladus could lead to electrodynamic coupling between Enceladus and Saturn like that which links Jupiter with Io, Europa and Ganymede. Powerful field-aligned electron beams associated with the Io-Jupiter coupling, for example, create an auroral footprint in Jupiter's ionosphere. Auroral ultraviolet emission associated with Enceladus-Saturn coupling is anticipated to be just a few tenths of a kilorayleigh (ref. 12), about an order of magnitude dimmer than Io's footprint and below the observable threshold, consistent with its non-detection. Here we report the detection of magnetic-field-aligned ion and electron beams (offset several moon radii downstream from Enceladus) with sufficient power to stimulate detectable aurora, and the subsequent discovery of Enceladus-associated aurora in a few per cent of the scans of the moon's footprint. The footprint varies in emission magnitude more than can plausibly be explained by changes in magnetospheric parameters--and as such is probably indicative of variable plume activity. [less ▲]

Detailed reference viewed: 21 (5 ULg)
Full Text
Peer Reviewed
See detailA SUMOylation-defective MITF germline mutation predisposes to melanoma and renal carcinoma.
Bertolotto, Corine; Lesueur, Fabienne; Giuliano, Sandy et al

in Nature (2011), 480(7375), 94-8

So far, no common environmental and/or phenotypic factor has been associated with melanoma and renal cell carcinoma (RCC). The known risk factors for melanoma include sun exposure, pigmentation and nevus ... [more ▼]

So far, no common environmental and/or phenotypic factor has been associated with melanoma and renal cell carcinoma (RCC). The known risk factors for melanoma include sun exposure, pigmentation and nevus phenotypes; risk factors associated with RCC include smoking, obesity and hypertension. A recent study of coexisting melanoma and RCC in the same patients supports a genetic predisposition underlying the association between these two cancers. The microphthalmia-associated transcription factor (MITF) has been proposed to act as a melanoma oncogene; it also stimulates the transcription of hypoxia inducible factor (HIF1A), the pathway of which is targeted by kidney cancer susceptibility genes. We therefore proposed that MITF might have a role in conferring a genetic predisposition to co-occurring melanoma and RCC. Here we identify a germline missense substitution in MITF (Mi-E318K) that occurred at a significantly higher frequency in genetically enriched patients affected with melanoma, RCC or both cancers, when compared with controls. Overall, Mi-E318K carriers had a higher than fivefold increased risk of developing melanoma, RCC or both cancers. Codon 318 is located in a small-ubiquitin-like modifier (SUMO) consensus site (PsiKXE) and Mi-E318K severely impaired SUMOylation of MITF. Mi-E318K enhanced MITF protein binding to the HIF1A promoter and increased its transcriptional activity compared to wild-type MITF. Further, we observed a global increase in Mi-E318K-occupied loci. In an RCC cell line, gene expression profiling identified a Mi-E318K signature related to cell growth, proliferation and inflammation. Lastly, the mutant protein enhanced melanocytic and renal cell clonogenicity, migration and invasion, consistent with a gain-of-function role in tumorigenesis. Our data provide insights into the link between SUMOylation, transcription and cancer. [less ▲]

Detailed reference viewed: 79 (6 ULg)
Full Text
Peer Reviewed
See detailAcetylation-dependent regulation of endothelial Notch signalling by the SIRT1 deacetylase.
Guarani, Virginia; Deflorian, Gianluca; Franco, Claudio A et al

in Nature (2011), 473(7346), 234-8

Notch signalling is a key intercellular communication mechanism that is essential for cell specification and tissue patterning, and which coordinates critical steps of blood vessel growth. Although subtle ... [more ▼]

Notch signalling is a key intercellular communication mechanism that is essential for cell specification and tissue patterning, and which coordinates critical steps of blood vessel growth. Although subtle alterations in Notch activity suffice to elicit profound differences in endothelial behaviour and blood vessel formation, little is known about the regulation and adaptation of endothelial Notch responses. Here we report that the NAD(+)-dependent deacetylase SIRT1 acts as an intrinsic negative modulator of Notch signalling in endothelial cells. We show that acetylation of the Notch1 intracellular domain (NICD) on conserved lysines controls the amplitude and duration of Notch responses by altering NICD protein turnover. SIRT1 associates with NICD and functions as a NICD deacetylase, which opposes the acetylation-induced NICD stabilization. Consequently, endothelial cells lacking SIRT1 activity are sensitized to Notch signalling, resulting in impaired growth, sprout elongation and enhanced Notch target gene expression in response to DLL4 stimulation, thereby promoting a non-sprouting, stalk-cell-like phenotype. In vivo, inactivation of Sirt1 in zebrafish and mice causes reduced vascular branching and density as a consequence of enhanced Notch signalling. Our findings identify reversible acetylation of the NICD as a molecular mechanism to adapt the dynamics of Notch signalling, and indicate that SIRT1 acts as rheostat to fine-tune endothelial Notch responses. [less ▲]

Detailed reference viewed: 205 (20 ULg)
Full Text
Peer Reviewed
See detailLarge colonial organisms with coordinated growth in oxygenated environments 2.1 Gyr ago
El Albani, Abder; Bengtson, Stefan; Canfield, Donald et al

in Nature (2010), 466

Detailed reference viewed: 93 (19 ULg)
Full Text
Peer Reviewed
See detailA transiting giant planet with a temperature between 250K and 430K
Deeg, H. J.; Moutou, C.; Erikson, A. et al

in Nature (2010), 464

Of the over 400 known exoplanets, there are about 70 planets that transit their central star, a situation that permits the derivation of their basic parameters and facilitates investigations of their ... [more ▼]

Of the over 400 known exoplanets, there are about 70 planets that transit their central star, a situation that permits the derivation of their basic parameters and facilitates investigations of their atmospheres. Some short-period planets, including the first terrestrial exoplanet (CoRoT-7b), have been discovered using a space mission designed to find smaller and more distant planets than can be seen from the ground. Here we report transit observations of CoRoT-9b, which orbits with a period of 95.274days on a low eccentricity of 0.11+/-0.04 around a solar-like star. Its periastron distance of 0.36 astronomical units is by far the largest of all transiting planets, yielding a `temperate' photospheric temperature estimated to be between 250 and 430K. Unlike previously known transiting planets, the present size of CoRoT-9b should not have been affected by tidal heat dissipation processes. Indeed, the planet is found to be well described by standard evolution models with an inferred interior composition consistent with that of Jupiter and Saturn. [less ▲]

Detailed reference viewed: 46 (4 ULg)
Full Text
Peer Reviewed
See detailDeviations from a uniform period spacing of gravity modes in a massive star
Degroote, Pieter; Aerts, Conny; Baglin, Annie et al

in Nature (2010), 464

The life of a star is dominantly determined by the physical processes in the stellar interior. Unfortunately, we still have a poor understanding of how the stellar gas mixes near the stellar core ... [more ▼]

The life of a star is dominantly determined by the physical processes in the stellar interior. Unfortunately, we still have a poor understanding of how the stellar gas mixes near the stellar core, preventing precise predictions of stellar evolution. The unknown nature of the mixing processes as well as the extent of the central mixed region is particularly problematic for massive stars. Oscillations in stars with masses a few times that of the Sun offer a unique opportunity to disentangle the nature of various mixing processes, through the distinct signature they leave on period spacings in the gravity mode spectrum. Here we report the detection of numerous gravity modes in a young star with a mass of about seven solar masses. The mean period spacing allows us to estimate the extent of the convective core, and the clear periodic deviation from the mean constrains the location of the chemical transition zone to be at about 10 per cent of the radius and rules out a clear-cut profile. [less ▲]

Detailed reference viewed: 16 (6 ULg)
Full Text
Peer Reviewed
See detailOrganic-walled microfossils in 3.2-billion-year-old shallow-marine siliciclastic deposits
Javaux, Emmanuelle ULg; Marshall, Craig P.; Bekker, Andrey

in Nature (2010), doi:10.1038/nature08793(463), 934-938

Although the notion of an early origin and diversification of life on Earth during the Archaean eon has received increasing support in geochemical, sedimentological and palaeontological evidence ... [more ▼]

Although the notion of an early origin and diversification of life on Earth during the Archaean eon has received increasing support in geochemical, sedimentological and palaeontological evidence, ambiguities and controversies persist regarding the biogenicity and syngeneity of the record older than Late Archaean1–3. Nonbiological processes are known to produce morphologies similar to some microfossils4,5, and hydrothermal fluids have the potential to produce abiotic organic compounds with depleted carbon isotope values6, making it difficult to establish unambiguous traces of life. Here we report the discovery of a population of large (up to about 300 mmin diameter) carbonaceous spheroidal microstructures in Mesoarchaean shales and siltstones of the Moodies Group, South Africa, the Earth’s oldest siliciclastic alluvial to tidalestuarine deposits7. These microstructures are interpreted as organic-walled microfossils on the basis of petrographic and geochemical evidence for their endogenicity and syngeneity, their carbonaceous composition, cellular morphology and ultrastructure, occurrence in populations, taphonomic features of soft wall deformation, and the geological context plausible for life, as well as a lack of abiotic explanation falsifying a biological origin. These are the oldest and largest Archaean organic-walled spheroidal microfossils reported so far. Our observations suggest that relatively large microorganisms cohabited with earlier reported benthic microbial mats8 in the photic zone of marginal marine siliciclastic environments 3.2 billion years ago. [less ▲]

Detailed reference viewed: 65 (19 ULg)
Full Text
Peer Reviewed
See detailAn orbital period of 0.94days for the hot-Jupiter planet WASP-18b
Hellier, Coel; Anderson, D. R.; Cameron, A Collier et al

in Nature (2009), 460

The `hot Jupiters' that abound in lists of known extrasolar planets are thought to have formed far from their host stars, but migrate inwards through interactions with the proto-planetary disk from which ... [more ▼]

The `hot Jupiters' that abound in lists of known extrasolar planets are thought to have formed far from their host stars, but migrate inwards through interactions with the proto-planetary disk from which they were born, or by an alternative mechanism such as planet-planet scattering. The hot Jupiters closest to their parent stars, at orbital distances of only ~0.02 astronomical units, have strong tidal interactions, and systems such as OGLE-TR-56 have been suggested as tests of tidal dissipation theory. Here we report the discovery of planet WASP-18b with an orbital period of 0.94days and a mass of ten Jupiter masses (10M[SUB]Jup[/SUB]), resulting in a tidal interaction an order of magnitude stronger than that of planet OGLE-TR-56b. Under the assumption that the tidal-dissipation parameter Q of the host star is of the order of 10[SUP]6[/SUP], as measured for Solar System bodies and binary stars and as often applied to extrasolar planets, WASP-18b will be spiralling inwards on a timescale less than a thousandth that of the lifetime of its host star. Therefore either WASP-18 is in a rare, exceptionally short-lived state, or the tidal dissipation in this system (and possibly other hot-Jupiter systems) must be much weaker than in the Solar System. [less ▲]

Detailed reference viewed: 32 (6 ULg)
Full Text
Peer Reviewed
See detailA role for Rhesus factor Rhcg in renal ammonium excretion and male fertility
Biver, Sophie ULg; Belge, Hendrica; Bourgeois, Soline et al

in Nature (2008), 456(7220), 339-343

Detailed reference viewed: 20 (1 ULg)
Full Text
Peer Reviewed
See detailFlares from a candidate Galactic magnetar suggest a missing link to dim isolated neutron stars
Castro-Tirado, A. J.; de Ugarte Postigo, A.; Gorosabel, J. et al

in Nature (2008), 455

Magnetars are young neutron stars with very strong magnetic fields of the order of 10[SUP]14[/SUP]-10[SUP]15[/SUP]G. They are detected in our Galaxy either as soft γ-ray repeaters or anomalous X-ray ... [more ▼]

Magnetars are young neutron stars with very strong magnetic fields of the order of 10[SUP]14[/SUP]-10[SUP]15[/SUP]G. They are detected in our Galaxy either as soft γ-ray repeaters or anomalous X-ray pulsars. Soft γ-ray repeaters are a rare type of γ-ray transient sources that are occasionally detected as bursters in the high-energy sky. No optical counterpart to the γ-ray flares or the quiescent source has yet been identified. Here we report multi-wavelength observations of a puzzling source, SWIFT J195509+261406. We detected more than 40 flaring episodes in the optical band over a time span of three days, and a faint infrared flare 11days later, after which the source returned to quiescence. Our radio observations confirm a Galactic nature and establish a lower distance limit of ~3.7kpc. We suggest that SWIFT J195509+261406 could be an isolated magnetar whose bursting activity has been detected at optical wavelengths, and for which the long-term X-ray emission is short-lived. In this case, a new manifestation of magnetar activity has been recorded and we can consider SWIFT J195509+261406 to be a link between the `persistent' soft γ-ray repeaters/anomalous X-ray pulsars and dim isolated neutron stars. [less ▲]

Detailed reference viewed: 29 (0 ULg)
Full Text
Peer Reviewed
See detailNeurogenin 2 controls cortical neuron migration through regulation of Rnd2.
Heng, Julian Ik-Tsen; Nguyen, Laurent ULg; Castro, Diogo S et al

in Nature (2008), 455(7209), 114-8

Motility is a universal property of newly generated neurons. How cell migration is coordinately regulated with other aspects of neuron production is not well understood. Here we show that the proneural ... [more ▼]

Motility is a universal property of newly generated neurons. How cell migration is coordinately regulated with other aspects of neuron production is not well understood. Here we show that the proneural protein neurogenin 2 (Neurog2), which controls neurogenesis in the embryonic cerebral cortex, directly induces the expression of the small GTP-binding protein Rnd2 (ref. 3) in newly generated mouse cortical neurons before they initiate migration. Rnd2 silencing leads to a defect in radial migration of cortical neurons similar to that observed when the Neurog2 gene is deleted. Remarkably, restoring Rnd2 expression in Neurog2-mutant neurons is sufficient to rescue their ability to migrate. Our results identify Rnd2 as a novel essential regulator of neuronal migration in the cerebral cortex and demonstrate that Rnd2 is a major effector of Neurog2 function in the promotion of migration. Thus, a proneural protein controls the complex cellular behaviour of cell migration through a remarkably direct pathway involving the transcriptional activation of a small GTP-binding protein. [less ▲]

Detailed reference viewed: 93 (16 ULg)