References of "Journal of Biological Chemistry"
     in
Bookmark and Share    
Full Text
Peer Reviewed
See detailAMP-activated protein kinase (AMPK) activation and glycogen synthase kinase-3beta (GSK-3beta) inhibition induce Ca2+-independent deposition of tight junction components at the plasma membrane.
Zhang, Lihong ULiege; JOURET, François ULiege; Rinehart, Jesse et al

in Journal of Biological Chemistry (2011), 286(19), 16879-90

Extracellular Ca(2+) is essential for the development of stable epithelial tight junctions. We find that in the absence of extracellular Ca(2+), AMP-activated protein kinase (AMPK) activation and glycogen ... [more ▼]

Extracellular Ca(2+) is essential for the development of stable epithelial tight junctions. We find that in the absence of extracellular Ca(2+), AMP-activated protein kinase (AMPK) activation and glycogen synthase kinase (GSK)-3beta inhibition independently induce the localization of epithelial tight junction components to the plasma membrane. The Ca(2+)-independent deposition of junctional proteins induced by AMPK activation and GSK-3beta inhibition is independent of E-cadherin. Furthermore, the nectin-afadin system is required for the deposition of tight junction components induced by AMPK activation, but it is not required for that induced by GSK-3beta inhibition. Phosphorylation studies demonstrate that afadin is a substrate for AMPK. These data demonstrate that two kinases involved in regulating cell growth and metabolism act through distinct pathways to influence the deposition of the components of epithelial tight junctions. [less ▲]

Detailed reference viewed: 107 (7 ULiège)
Full Text
Peer Reviewed
See detailA specific inorganic triphosphatase from Nitrosomonas europaea: structure and catalytic mechanism
Delvaux, David ULiege; Murty, Mamidana R.V.S; Gabelica, Valérie ULiege et al

in Journal of Biological Chemistry (2011), 286

The CYTH superfamily of proteins is named after its two founding members, the CyaB adenylyl cyclase from Aeromonas hydrophila and the human 25-kDa thiamine triphosphatase. Because these proteins often ... [more ▼]

The CYTH superfamily of proteins is named after its two founding members, the CyaB adenylyl cyclase from Aeromonas hydrophila and the human 25-kDa thiamine triphosphatase. Because these proteins often form a closed β-barrel, they are also referred to as “Triphosphate Tunnel Metalloenzymes” (TTM). Functionally, they are characterized by their ability to bind triphosphorylated substrates and divalent metal ions. These proteins exist in most organisms and catalyze different reactions, depending on their origin. Here we investigate structural and catalytic properties of the recombinant TTM protein from Nitrosomonas europaea (NeuTTM), a 19-kDa protein. Crystallographic data show that it crystallizes as a dimer and that, in contrast to other TTM proteins, it has an open β-barrel structure. We demonstrate that NeuTTM is a highly specific inorganic triphosphatase, hydrolyzing tripolyphosphate (PPPi) with high catalytic efficiency in the presence of Mg2+. These data are supported by native mass spectrometry analysis showing that the enzyme binds PPPi (and Mg-PPPi) with high affinity (Kd < 1.5 μM), while it has a low affinity for ATP or thiamine triphosphate. In contrast to Aeromonas and Yersinia CyaB proteins, NeuTTM has no adenylyl cyclase activity, but it shares several properties with other enzymes of the CYTH superfamily, e.g. heat-stability, alkaline pH optimum and inhibition by Ca2+ and Zn2+ ions. We suggest a catalytic mechanism involving a catalytic dyad formed by K52 and Y28. The present data provide the first characterization of a new type of phosphohydrolase (unrelated to pyrophosphatases or exopolyphosphatases), able to hydrolyze inorganic triphosphate with high specificity. [less ▲]

Detailed reference viewed: 96 (30 ULiège)
Full Text
Peer Reviewed
See detailStepwise adaptations to low temperature as revealed by multiple mutants of a psychrophilic alpha-amylase from an Antarctic bacterium
Cipolla, Alexandre ULiege; D'Amico, Salvino ULiege; Barumandzadeh, Roya et al

in Journal of Biological Chemistry (2011), 286(44), 3834838355

Detailed reference viewed: 46 (12 ULiège)
Full Text
Peer Reviewed
See detailInnate immune responses of a scleractinian coral to vibriosis
Vidal-Dupiol, Jérémie; Ladrière, Ophélie ULiege; Destoumieux-Garzon, Delphine et al

in Journal of Biological Chemistry (2011)

Detailed reference viewed: 53 (10 ULiège)
Full Text
Peer Reviewed
See detailRole of the netrin-like domain of procollagen C-proteinase enhancer-1 in the control of metalloproteinase activity.
Bekhouche, M.; Kronenberg; Colige, Alain ULiege et al

in Journal of Biological Chemistry (2010), 285(21), 15950-9

Detailed reference viewed: 14 (0 ULiège)
Full Text
Peer Reviewed
See detailThe Pax6b homeodomain is dispensable for pancreatic endocrine cell differentiation in zebrafish.
Verbruggen, Vincianne; Ek, Olivier; Georlette, Daphne et al

in Journal of Biological Chemistry (2010), 285(18), 13863-73

Pax6 is a well conserved transcription factor that contains two DNA-binding domains, a paired domain and a homeodomain, and plays a key role in the development of eye, brain, and pancreas in vertebrates ... [more ▼]

Pax6 is a well conserved transcription factor that contains two DNA-binding domains, a paired domain and a homeodomain, and plays a key role in the development of eye, brain, and pancreas in vertebrates. The recent identification of the zebrafish sunrise mutant, harboring a mutation in the pax6b homeobox and presenting eye abnormalities but no obvious pancreatic defects, raised a question about the role of pax6b in zebrafish pancreas. We show here that pax6b does play an essential role in pancreatic endocrine cell differentiation, as revealed by the phenotype of a novel zebrafish pax6b null mutant and of embryos injected with pax6b morpholinos. Pax6b-depleted embryos have almost no beta cells, a strongly reduced number of delta cells, and a significant increase of epsilon cells. Through the use of various morpholinos targeting intron-exon junctions, pax6b RNA splicing was perturbed at several sites, leading either to retention of intronic sequences or to deletion of exonic sequences in the pax6b transcript. By this strategy, we show that deletion of the Pax6b homeodomain in zebrafish embryos does not disturb pancreas development, whereas lens formation is strongly affected. These data thus provide the explanation for the lack of pancreatic defects in the sunrise pax6b mutants. In addition, partial reduction of Pax6b function in zebrafish embryos performed by injection of small amounts of pax6b morpholinos caused a clear rise in alpha cell number and in glucagon expression, emphasizing the importance of the fine tuning of the Pax6b level to its biological activity. [less ▲]

Detailed reference viewed: 42 (5 ULiège)
Full Text
Peer Reviewed
See detailAllosteric block of KCa2 channels by apamin
Lamy, Cédric ULiege; Goodchild, Samuel J; Weatherall, Kate L et al

in Journal of Biological Chemistry (2010), 287

Detailed reference viewed: 78 (35 ULiège)
Full Text
Peer Reviewed
See detailBCL-3 degradation involves its polyubiquitination through a FBW7-independent pathway and its binding to the proteasome subunit PSMB1.
Keutgens, Aurore ULiege; Zhang-Shao, Xin ULiege; Shostak, Kateryna ULiege et al

in Journal of Biological Chemistry (2010), 285(33), 2583125840

The oncogenic protein BCL-3 activates or represses gene transcription through binding with the NF-kappaB proteins p50 and p52 and is degraded through a phospho- and GSK3-dependent pathway. However, the ... [more ▼]

The oncogenic protein BCL-3 activates or represses gene transcription through binding with the NF-kappaB proteins p50 and p52 and is degraded through a phospho- and GSK3-dependent pathway. However, the mechanisms underlying its degradation remain poorly understood. Yeast-two-hybrid analysis led to the identification of the proteasome subunit PSMB1 as a BCL-3-associated protein. The binding of BCL-3 to PSMB1 is required for its degradation through the proteasome. Indeed, PSMB1-depleted cells are defective in degrading polyubiquitinated BCL-3. The N-terminal part of BCL-3 includes lysines 13 and 26 required for the K48-linked polyubiquitination of BCL-3. Moreover, the E3 ligase FBW7 known to polyubiquitinate a variety of substrates phosphorylated by GSK3 is dispensable for BCL-3 degradation. Thus, our data defined an unique motif of BCL-3 that is needed for its recruitment to the proteasome and identified PSMB1 as a key protein required for the proteasome-mediated degradation of a nuclear and oncogenic IkappaB protein. [less ▲]

Detailed reference viewed: 88 (37 ULiège)
Full Text
Peer Reviewed
See detailMolecular requirements for ethanol differential allosteric modulation of glycine receptors based on selective Gbetagamma modulation.
Yevenes, Gonzalo E; Moraga-Cid, Gustavo; Avila, Ariel et al

in Journal of Biological Chemistry (2010), 285(39), 30203-13

It is now believed that the allosteric modulation produced by ethanol in glycine receptors (GlyRs) depends on alcohol binding to discrete sites within the protein structure. Thus, the differential ethanol ... [more ▼]

It is now believed that the allosteric modulation produced by ethanol in glycine receptors (GlyRs) depends on alcohol binding to discrete sites within the protein structure. Thus, the differential ethanol sensitivity of diverse GlyR isoforms and mutants was explained by the presence of specific residues in putative alcohol pockets. Here, we demonstrate that ethanol sensitivity in two ligand-gated ion receptor members, the GlyR adult alpha(1) and embryonic alpha(2) subunits, can be modified through selective mutations that rescued or impaired Gbetagamma modulation. Even though both isoforms were able to physically interact with Gbetagamma, only the alpha(1) GlyR was functionally modulated by Gbetagamma and pharmacological ethanol concentrations. Remarkably, the simultaneous switching of two transmembrane and a single extracellular residue in alpha(2) GlyRs was enough to generate GlyRs modulated by Gbetagamma and low ethanol concentrations. Interestingly, although we found that these TM residues were different to those in the alcohol binding site, the extracellular residue was recently implicated in conformational changes important to generate a pre-open-activated state that precedes ion channel gating. Thus, these results support the idea that the differential ethanol sensitivity of these two GlyR isoforms rests on conformational changes in transmembrane and extracellular residues within the ion channel structure rather than in differences in alcohol binding pockets. Our results describe the molecular basis for the differential ethanol sensitivity of two ligand-gated ion receptor members based on selective Gbetagamma modulation and provide a new mechanistic framework for allosteric modulations of abuse drugs. [less ▲]

Detailed reference viewed: 14 (3 ULiège)
Full Text
Peer Reviewed
See detailThiamine triphosphate synthesis in rat brain occurs in mitochondria and is coupled to the respiratory chain
Gangolf, Marjorie ULiege; Wins, Pierre; Thiry, Marc ULiege et al

in Journal of Biological Chemistry (2010), 285

Detailed reference viewed: 93 (40 ULiège)
Full Text
Peer Reviewed
See detailA phosphorylation switch regulates the transcriptional activation of cell cycle regulator p21 by histone deacetylase inhibitors.
Simboeck, E.; Sawicka, A.; Zupkovitz, G. et al

in Journal of Biological Chemistry (2010)

Histone deacetylase inhibitors induce cell cycle arrest and apoptosis in tumor cells and are therefore promising anti-cancer drugs. The CDK inhibitor p21 is activated in HDAC inhibitor treated tumor cells ... [more ▼]

Histone deacetylase inhibitors induce cell cycle arrest and apoptosis in tumor cells and are therefore promising anti-cancer drugs. The CDK inhibitor p21 is activated in HDAC inhibitor treated tumor cells and its growth-inhibitory function contributes to the anti-tumorigenic effect of HDAC inhibitors. We show here that induction of p21 by trichostatin A involves MAP kinase signaling. Activation of the MAP kinase signaling pathway by growth factors or stress signals results in histone H3 serine 10 phosphorylation at the p21 promoter and is crucial for acetylation of the neighboring lysine 14 and recruitment of activated RNA polymerase II in response to trichostatin A treatment. In non-induced cells, the protein phosphatase PP2A is associated with the p21 gene and counteracts its activation. Induction of p21 is linked to simultaneous acetylation and phosphorylation of histone H3. The dual modification mark H3S10phK14ac at the activated p21 promoter is recognized by the phospho-binding protein 14-3-3 zeta, which protects the phosphoacetylation mark from being processed by PP2A. Taken together we have revealed a crosstalk of reversible phosphorylation and acetylation signals that controls the activation of p21 by HDAC inhibitors and identify the phosphatase PP2A as chromatin-associated transcriptional repressor in mammalian cells. [less ▲]

Detailed reference viewed: 28 (3 ULiège)
Full Text
Peer Reviewed
See detailEpigenetic control of the invasion-promoting MT1-MMP/MMP-2/TIMP-2 axis in cancer cells
Chernov, Andrei V.; Sounni, Nor Eddine ULiege; Remacle, Albert G. et al

in Journal of Biological Chemistry (2009), 284(19), 12727-34

Membrane type-1 matrix metalloproteinase (MT1-MMP) is an activator of soluble MMP-2. The activity of both MMPs is regulated by their physiological inhibitor TIMP-2. An MT1-MMP/MMP-2/TIMP-2 axis plays a ... [more ▼]

Membrane type-1 matrix metalloproteinase (MT1-MMP) is an activator of soluble MMP-2. The activity of both MMPs is regulated by their physiological inhibitor TIMP-2. An MT1-MMP/MMP-2/TIMP-2 axis plays a key role in the invasive behavior of many cell types. Despite its importance, epigenetic control of this pro-invasive axis is insufficiently studied, and, as a result, its modification in a rational and clinically beneficial manner is exceedingly difficult. Therefore, we performed an epigenetic analysis of the MT1-MMP, MMP-2, and TIMP-2 gene promoters in highly migratory glioblastoma cells and in low migratory breast carcinoma MCF-7 cells. We determined, for the first time, that the epigenetic control leading to the transcriptional silencing of both MMPs includes hypermethylation of the corresponding CpG regions and histone H3 lysine-27 trimethylation (H3K27me3). In turn, undermethylation of the CpG islands and low levels of histone H3 lysine-27 trimethylation are features of transcriptionally active MT1-MMP and MMP-2 genes in invasive cancer cells. Additional histone modifications we have analyzed, including H3ac and H3K4me2, are present in both transcriptionally active and inactive promoters of both MMPs. Histone H3 lysine-4 trimethylation is likely to play no significant role in regulating MT1-MMP and MMP-2. The pattern of epigenetic regulation of TIMP-2 was clearly distinct from that of MMPs and included the coordinated methylation and demethylation of the two CpG regions in the promoter. Our results suggest that the epigenetic control plays an important role in both the balanced regulation of the MT1-MMP/MMP-2/TIMP-2 axis and the invasive behavior in cancer cells. [less ▲]

Detailed reference viewed: 28 (5 ULiège)
Full Text
Peer Reviewed
See detailThe dexamethasone-induced inhibition of proliferation, migration and invasion in glioma cell lines is antagonized by macrophage migration inhibitory factor (MIF) and can be enhanced by specific MIF inhibitors.
Piette, Caroline ULiege; Deprez, Manuel ULiege; Roger, Th et al

in Journal of Biological Chemistry (2009), 284(47), 32483-92

Glioblastomas (GBMs) are the most frequent and malignant brain tumors in adults. Glucocorticoids (GCs) are routinely used in the treatment of GBMs for their capacity to reduce the tumor-associated edema ... [more ▼]

Glioblastomas (GBMs) are the most frequent and malignant brain tumors in adults. Glucocorticoids (GCs) are routinely used in the treatment of GBMs for their capacity to reduce the tumor-associated edema. Few in vitro studies have suggested that GCs inhibit the migration and invasion of GBM cells through the induction of MAPK phosphatase 1 (MKP-1). Macrophage migration inhibitory factor (MIF), an endogenous GC antagonist is up-regulated in GBMs. Recently, MIF has been involved in tumor growth and migration/invasion and specific MIF inhibitors have been developed on their capacity to block its enzymatic tautomerase activity site. In this study, we characterized several glioma cell lines for their MIF production. U373 MG cells were selected for their very low endogenous levels of MIF. We showed that dexamethasone inhibits the migration and invasion of U373 MG cells, through a glucocorticoid receptor (GR)- dependent inhibition of the ERK1/2 MAPK pathway. Oppositely, we found that exogenous MIF increases U373 MG migration and invasion through the stimulation of the ERK1/2 MAP kinase pathway and that this activation is CD74 independent. Finally, we used the Hs 683 glioma cells that are resistant to GCs and produce high levels of endogenous MIF, and showed that the specific MIF inhibitor ISO-1 could restore dexamethasone sensitivity in these cells. Collectively, our results indicate an intricate pathway between MIF expression and GC resistance. They suggest that MIF inhibitors could increase the response of GBMs to corticotherapy. [less ▲]

Detailed reference viewed: 68 (9 ULiège)
Full Text
Peer Reviewed
See detailDeorphanization of GPR109B as a receptor for the beta-oxidation intermediate 3-OH-octanoic acid and its role in the regulation of lipolysis
Ahmed, Kashan; Tunaru, Sorin; Langhans, C. D. et al

in Journal of Biological Chemistry (2009), 284(33), 21928-33

Detailed reference viewed: 47 (6 ULiège)
Full Text
Peer Reviewed
See detailRhoA-GDP regulates RhoB protein stability. Potential involvement of RhoGDIalpha.
Ho, Thi Thanh Giang ULiege; Merajver, Sofia D; Lapière, Charles et al

in Journal of Biological Chemistry (2008), 283(31), 21588-98

RhoA plays a significant role in actin stress fibers formation. However, silencing RhoA alone or RhoA and RhoC did not completely suppress the stress fibers suggesting a residual "Rho-like" activity. RhoB ... [more ▼]

RhoA plays a significant role in actin stress fibers formation. However, silencing RhoA alone or RhoA and RhoC did not completely suppress the stress fibers suggesting a residual "Rho-like" activity. RhoB, the third member of the Rho subclass, is a shortlived protein barely detectable in basal conditions. In various cell types, the silencing of RhoA induced a strong up-regulation of both total and active RhoB protein levels that were rescued by re-expressing RhoA and related to an enhanced half-life of the protein. The RhoA-dependent regulation of RhoB does not depend on the activity of RhoA but is mediated by its GDP-bound form. The stabilization of RhoB was not dependent on isoprenoid biosynthesis, Rho kinase, extracellular signal-regulated kinase, p38 mitogen-activated kinase, or phosphatidylinositol 3'-OH kinase pathways but required RhoGDIalpha. The forced expression of RhoGDIalpha increased RhoB half-life, whereas its knock-down antagonized the induction of RhoB following RhoA silencing. Moreover, a RhoA mutant (RhoAR68E) unable to bind RhoGDIalpha was significantly less efficient as compared with wild-type RhoA in reversing RhoB up-regulation upon RhoA silencing. These results suggest that, in basal conditions, RhoGDIalpha is rate-limiting and the suppression of RhoA makes it available to stabilize RhoB. Our results highlight RhoGDIalpha-dependent cross-talks that regulate the stability of RhoGTPases. [less ▲]

Detailed reference viewed: 100 (23 ULiège)
Full Text
Peer Reviewed
See detailCrystal structure of the cold-active aminopeptidase from Colwellia psychrerythraea, a close structural homologue of the human bifunctional leukotriene A4 hydrolase
Bauvois, Cédric; Jacquamet, Lilian; Huston, Adrienne L. et al

in Journal of Biological Chemistry (2008), 283(34), 23315-25

The crystal structure of a cold-active aminopeptidase (ColAP) from Colwellia psychrerythraea strain 34H has been determined, extending the number of crystal structures of the M1 metallopeptidase family to ... [more ▼]

The crystal structure of a cold-active aminopeptidase (ColAP) from Colwellia psychrerythraea strain 34H has been determined, extending the number of crystal structures of the M1 metallopeptidase family to four among the 436 members currently identified. In agreement with their sequence similarity, the overall structure of ColAP displayed a high correspondence with leukotriene A4 hydrolase (LTA4H), a human bifunctional enzyme that converts leukotriene A4 (LTA4) in the potent chemoattractant leukotriene B4. Indeed, both enzymes are composed of three domains, an N-terminal saddle-like domain, a catalytic thermolysin-like domain, and a less conserved C-terminal alpha-helical flat spiral domain. Together, these domains form a deep cavity harboring the zinc binding site formed by residues included in the conserved HEXXHX(18)H motif. A detailed structural comparison of these enzymes revealed several plausible determinants of ColAP cold adaptation. The main differences involve specific amino acid substitutions, loop content and solvent exposure, complexity and distribution of ion pairs, and differential domain flexibilities. Such elements may act synergistically to allow conformational flexibility needed for an efficient catalysis in cold environments. Furthermore, the region of ColAP corresponding to the aminopeptidase active site of LTA4H is much more conserved than the suggested LTA4 substrate binding region. This observation supports the hypothesis that this region of the LTA4H active site has evolved in order to fit the lipidic substrate. [less ▲]

Detailed reference viewed: 41 (1 ULiège)
Full Text
Peer Reviewed
See detailA Temperature-sensitive mutation in the Arabidopsis thaliana phosphomannomutase gene disrupts protein glycosylation and triggers cell death.
Hoeberichts, Frank A; Vaeck, Elke; Kiddle, Guy et al

in Journal of Biological Chemistry (2008), 283(9), 5708-18

Eukaryotic phosphomannomutases (PMMs) catalyze the interconversion of mannose 6-phosphate to mannose 1-phosphate and are essential to the biosynthesis of GDP-mannose. As such, plant PMMs are involved in ... [more ▼]

Eukaryotic phosphomannomutases (PMMs) catalyze the interconversion of mannose 6-phosphate to mannose 1-phosphate and are essential to the biosynthesis of GDP-mannose. As such, plant PMMs are involved in ascorbic acid (AsA) biosynthesis and N-glycosylation. We report on the conditional phenotype of the temperature-sensitive Arabidopsis thaliana pmm-12 mutant. Mutant seedlings were phenotypically similar to wild type seedlings when grown at 16-18 degrees C but died within several days after transfer to 28 degrees C. This phenotype was observed throughout both vegetative and reproductive development. Protein extracts derived from pmm-12 plants had lower PMM protein and enzyme activity levels. In vitro biochemical analysis of recombinant proteins showed that the mutant PMM protein was compromised in its catalytic efficiency (K cat/K m). Despite significantly decreased AsA levels in pmm-12 plants, AsA deficiency could not account for the observed phenotype. Since, at restrictive temperature, total glycoprotein patterns were altered and glycosylation of protein-disulfide isomerase was perturbed, we propose that a deficiency in protein glycosylation is responsible for the observed cell death phenotype. [less ▲]

Detailed reference viewed: 132 (5 ULiège)
Full Text
Peer Reviewed
See detailActivation mechanism of recombinant Der p 3 allergen zymogen - Contribution of cysteine protease Der p 1 and effect of propeptide glycosylation
Dumez, Marie-Eve ULiege; Teller, Nathalie; Mercier, Frédéric ULiege et al

in Journal of Biological Chemistry (2008), 283(45), 30606-30617

The trypsin-like protease Der p 3, a major allergen of the house dust mite Dermatophagoides pteronyssinus, is synthesized as a zymogen, termed proDer p 3. No recombinant source of Der p 3 has been ... [more ▼]

The trypsin-like protease Der p 3, a major allergen of the house dust mite Dermatophagoides pteronyssinus, is synthesized as a zymogen, termed proDer p 3. No recombinant source of Der p 3 has been described yet, and the zymogen maturation mechanism remains to be elucidated. The Der p 3 zymogen was produced in Pichia pastoris. We demonstrated that the recombinant zymogen is glycosylated at the level of its propeptide. We showed that the activation mechanism of proDer p 3 is intermolecular and is mediated by the house dust mite cysteine protease Der p 1. The primary structure of the proDer p 3 propeptide is associated with a unique zymogen activation mechanism, which is different from those described for the trypsin-like family and relies on the house dust mite papain-like protease Der p 1. This is the first report of a recombinant source of Der p 3, with the same enzymatic activity as the natural enzyme and trypsin. Glycosylation of the propeptide was found to decrease the rate of maturation. Finally, we showed that recombinant Der p 3 is inhibited by the free modified prosequence TP1R. [less ▲]

Detailed reference viewed: 117 (16 ULiège)