References of "Geophysical Research Abstracts"
     in
Bookmark and Share    
Full Text
Peer Reviewed
See detailHydrological behavior of a forested catena
Deraedt, Deborah ULg; Ridremont, François ULg; Claessens, Hugues ULg et al

in Geophysical Research Abstracts (2012), 14

At the time when the significance of water becomes more than obvious, we realize the utility of models that describe hydrological phenomena and that permit the optimization of water management. The soil ... [more ▼]

At the time when the significance of water becomes more than obvious, we realize the utility of models that describe hydrological phenomena and that permit the optimization of water management. The soil properties, as they have an influence both on hydrology and on plant development, are an element really essential in this type of model. But, as for tree characteristics, these properties are spatially and temporally variable. Therefore this research will specially focus on the case of forested slopes. The study will be divided into three parts. The first will characterize the vertical and the horizontal heterogeneity of the structural and hydrodynamic properties of soil. To do this, in addition to the analysis of the soil sampled along the slope, moisture sensors will be installed on different places on a slope and on different depths. For the greatest part it will be capacitive sensors whose values will be confirmed by TDR sensors. Each sensor will be inserted to cover the largest pedological and topographic variability. The second part of the study will permit to characterize the water flux repartition into the horizons down the slope. We will therefore apply a dye to surface on the top of the slope. The bottom of the slope will be equipped with an experimental system which collects water for each soil layer. The third parts will deal with the forest stand heterogeneity along the slope. We will measure characteristics such as tree height, roots repartition, stem circumference and also for different periods of the year, leaf area index (LAI). At the end of the research, we will measure tree rings for a dendrochronolocical study. The collected data will be analyzed to determine the slope effects on the soil properties, on the water flux distribution into the soil layer and on the tree characteristics. Afterwards the relations and the interactions can be conceptualized and introduced into a physical hydrological model. The studied slope is located on the Houille watershed in the West of the Belgian Ardenne. The site is situated under a Douglas fir cover (Pseudotsuga menziesii (MIRB.) FRANCO). It is about 170 meters long with an average slope of 25%. There are only few studies that attempt to connect physical models and the tree growth at the slope scale, leaving a vast untapped investigation area in the hydrological modelling. The study of this variability would afford possibility to improve hydrological models. From the point of view of the climate change, such a model would e.g. determine the best adapted species to each forest site. [less ▲]

Detailed reference viewed: 56 (28 ULg)
Full Text
Peer Reviewed
See detailMicro and macroscopic investigation to quantify tillage impact on soil hydrodynamic behaviour
Beckers, Eléonore ULg; Roisin, Chrsitian; Plougonven, Erwan ULg et al

in Geophysical Research Abstracts (2012), 14

Nowadays, tillage simplification is an increasing practice. Many advantages are cited in the literature, such as energy saving, soil conservation etc. Agricultural management practices influence soil ... [more ▼]

Nowadays, tillage simplification is an increasing practice. Many advantages are cited in the literature, such as energy saving, soil conservation etc. Agricultural management practices influence soil structure, but consequent changes in soil hydrodynamic behaviour at the field scale are still not well understood. Many studies focus only on macroscopic measurements which do not provide mechanistic explanations. Moreover, research shows divergent conclusions over structure modification. The aim of this work is to fill this gap by quantifying soil structure modification depending on tillage intensity through both macroscopic and microscopic measurements, the latter improving our comprehension of the fundamental mechanisms involved. [less ▲]

Detailed reference viewed: 66 (33 ULg)
Full Text
See detailCO2 total column retrieval by mid-IR FT Spectroscopy
Buschmann, M; Dohe, S; Mahieu, Emmanuel ULg et al

in Geophysical Research Abstracts (2012), 14

Over the last decade ground-based remote sensing measurements of CO2 have been established as an important component in the global observing system for greenhouse gases. Since 2004 the Total Carbon Column ... [more ▼]

Over the last decade ground-based remote sensing measurements of CO2 have been established as an important component in the global observing system for greenhouse gases. Since 2004 the Total Carbon Column Observing Network (TCCON) sites have provided CO2 retrievals in the near-IR region. CO2 can also be retrieved in the mid-IR spectral region and it would be of great benefit to use these spectra to produce CO2-data of sufficient precision. With this, 20 years of additional observations obtained in the mid-IR at a suite of FT-IR sites of the Network Detection of Atmospheric Composition Change (NDACC) will be accessible. We investigated a series of different CO2 microwindows in the mid-IR spectral region and present results from the most promising candidates for a showcase FT-IR site (Ny Alesund). Limitations of the approach are outlined and the feasibility of a future Mid-IR CO2-product of sufficient precision is discussed. [less ▲]

Detailed reference viewed: 45 (5 ULg)
Full Text
See detailRetrievals of ethane from ground-based high-resolution FTIR solar observations with updated line parameters: determination of the optimum strategy for the Jungfraujoch station.
Bader, Whitney ULg; Perrin, Agnès; Jacquemart, David et al

in Geophysical Research Abstracts (2012), 14(EGU2012-9126),

Ethane (C2H6) is the most abundant Non-Methane HydroCarbon (NMHC) in the Earth’s atmosphere, with a lifetime of approximately 2 months. C2H6 has both anthropogenic and natural emission sources such as ... [more ▼]

Ethane (C2H6) is the most abundant Non-Methane HydroCarbon (NMHC) in the Earth’s atmosphere, with a lifetime of approximately 2 months. C2H6 has both anthropogenic and natural emission sources such as biomass burning, natural gas loss and biofuel consumption. Oxidation by the hydroxyl radical is by far the major C2H6 sink as the seasonally changing OH concentration controls the strong modulation of the ethane abundance throughout the year. Ethane lowers Cl atom concentrations in the lower stratosphere and is a major source of peroxyacetyl nitrate (PAN) and carbon monoxide (by reaction with OH). Involved in the formation of tropospheric ozone and in the destruction of atmospheric methane through changes in OH, C2H6 is a non-direct greenhouse gas with a net-global warming potential (100-yr horizon) of 5.5. The retrieval of ethane from ground-based infrared (IR) spectra is challenging. Indeed, the fitting of the ethane features is complicated by numerous interferences by strong water vapor, ozone and methane absorptions. Moreover, ethane has a complicated spectrum with many interacting vibrational modes and the current state of ethane parameters in HITRAN (e.g. : Rothman et al., 2009, see http://www.hitran.com) was rather unsatisfactory in the 3 µm region. In fact, PQ branches outside the 2973–3001 cm-1 range are not included in HITRAN, and most P and R structures are missing. New ethane absorption cross sections recorded at the Molecular Spectroscopy Facility of the Rutherford Appleton Laboratory (Harrison et al., 2010) are used in our retrievals. They were calibrated in intensity by using reference low-resolution spectra from the Pacific Northwest National Laboratory (PNNL) IR database. Pseudoline parameters fitted to these ethane spectra have been combined with HITRAN 2004 line parameters (including all the 2006 updates) for all other species encompassed in the selected microwindows. Also, the improvement brought by the update of the line positions and intensities of methyl chloride (CH3Cl) in the 3.4 m region (Bray et al., 2011) will be quantified. The ethane a priori volume mixing ratio (VMR) profile and associated covariance are based on synthetic data from the chemical transport model (CTM) of the University of Oslo. In this contribution, we will present updated ethane total and tropospheric column retrievals, using the SFIT-2 algorithm (v3.91) and high-resolution Fourier Transform Infrared (FTIR) solar absorption observations recorded with a Bruker 120HR instrument, at the high altitude research station of the Jungfraujoch (46.5°N, 8°E, 3580 m asl), within the framework of the Network for the Detection of Atmospheric Composition Change (NDACC, visit http://www.ndacc.org). We will characterize three microwindows encompassing the strongest ethane features after careful selection of a priori VMR profiles, spectroscopic parameters, accounting at best for all interfering species. We will then present the retrieval strategy representative of the best combination of those three characterized micro-windows in order to minimize the fitting residuals while maximizing the information content, the precision and the reliability of the retrieved product. The long-term C2H6 column time series will be produced using the Jungfraujoch observational database. Comparisons with synthetic data produced by two chemical transport model (CHASER and the one of the University of Oslo) will also be presented and analyzed, aiming at the determination and interpretation of long-term trends and interannual variations of ethane at Northern mid-latitudes. [less ▲]

Detailed reference viewed: 328 (31 ULg)
Full Text
See detailEffect of raingage density, position and interpolation on rainfall-discharge modelling
Ly, Sarann ULg; Sohier, Catherine ULg; Charles, Catherine ULg et al

in Geophysical Research Abstracts (2012), 14(EGU2012), 2592

Precipitation traditionally observed using raingages or weather stations, is one of the main parameters that has direct impact on runoff production. This pPrecipitation data requires a preliminary spatial ... [more ▼]

Precipitation traditionally observed using raingages or weather stations, is one of the main parameters that has direct impact on runoff production. This pPrecipitation data requires a preliminary spatial interpolation prior to hydrological modeling. The accuracy of modelling result is determined bydepends on the accuracy of the interpolated spatial rainfall which differs according to different interpolation methods. The accuracy of the interpolated spatial rainfall is usually determined by cross-validation method. The objective of this study is to assess the different interpolation methods of daily rainfall at the watershed scale through hydrological modelling and to explore the best methods that provides a good long term simulation. Four versions of geostatistics: Ordinary Kriging (ORK), Universal Kriging (UNK), Kriging with External Dridft (KED) and Ordinary Cokriging (OCK) and two types of deterministic methods: Thiessen polygon (THI) and Inverse Distance Weighting (IDW) are used to produce 30-year daily rainfall inputs for a distributed physically-based hydrological model (EPIC-GRID). This work is conducted in the Ourthe and Ambleve nested catchments, located in the Ardennes hilly landscape in the Walloon region, Belgium. The total catchment area is 2908 km², lies between 67 and 693 m in elevation. The multivariate geostatistics (KED and OCK) are also used by incorporating elevation as external data to improve the rainfall prediction. This work also aims at analysing the effect of different raingage densities and position used for interpolation, on the stream flow modelled to get insight in terms of the capability and limitation of the geostatistical methods. The number of raingage varies from 70, 60, 50, 40, 30, 20, 8 to 4 stations located in and surrounding the catchment area. In the latter case, we try to use different positions: around the catchment and only a part of the catchment. The result shows that the simple method like THI fails to capture the rainfall and to produce good flow simulation when using 4 raingages. The KED and UNK are comparable to other methods for a raingage case that in which stations are located around the catchment area, especially in the high elevation catchment but the worst methods for other raingage position cases where the rainfall stations are located only at a part and mostly outside of the catchment area. However, three methods (IDW, ORK and OCK) can overcome this problem since they are more robust and can provide good performance of simulation in all raingage densities. When using 70, 60, 50, 40, 30, 20, 8 raingages in the catchment area (2908 km²), no substantial differences in model performance are observed. [less ▲]

Detailed reference viewed: 99 (15 ULg)
Full Text
See detailSeeking for the optimum retrieval strategy of methanol (CH3OH) from ground-based high-resolution FTIR solar observations recorded at the high-altitude Jungfraujoch station (46.5ºN)
Mahieu, Emmanuel ULg; Bader, Whitney ULg; Lejeune, Bernard ULg et al

in Geophysical Research Abstracts (2012), 14

Methanol (CH3OH) is a key organic compound in the Earth’s troposphere, with reported concentrations of the order of a few ppbv. It is indeed the second most abundant organic atmospheric compound after ... [more ▼]

Methanol (CH3OH) is a key organic compound in the Earth’s troposphere, with reported concentrations of the order of a few ppbv. It is indeed the second most abundant organic atmospheric compound after methane (Jacob et al., 2005). The same authors have estimated its lifetime to a few days. Natural sources of CH3OH include plant growth, oceans, decomposition of plant matter, oxidation of methane,. . . They are complemented by anthropogenic (from vehicles, industry) and biomass burning emissions. Oxidation by the hydroxyl radical is the main sink, leading to the formation of carbon monoxide (CO) and formaldehyde (H2CO) (Rinsland et al., 2009; Stavrakou et al., 2011, and references therein). The first retrievals of methanol from ground-based Fourier Transform Infrared (FTIR) spectra have been reported by Rinsland et al. (2009), using spectra recorded at Kitt Peak (31.9ºN) and a microwindow extending from 992 to 999 cm-1. Soon after, Stavrakou et al. (2011) used another spectral interval from 1029 to 1037 cm-1, for methanol retrievals at Reunion Island (21ºS). In both cases, lines of the strong nu8 band of CH3OH were adjusted, accounting for interferences by several isotopologues of ozone and by water vapor. In this contribution, we will present first retrievals of CH3OH from observations recorded at the high-altitude station of the Jungfraujoch (46.5ºN, 8ºE, 3580 m asl), with a Bruker 120HR spectrometer, in the framework of the Network for the Detection of Atmospheric Composition Change (NDACC, visit http://www.ndacc.org). We will implement existing retrieval approaches –and possibly additional one(s)– to determine which strategy is the most appropriate for our dry high-altitude site. If successful, a long-term CH3OH total column time series will be produced using the Jungfraujoch observational database, and we will perform preliminary investigations to characterize the seasonal and inter-annual variations of this species at northern mid-latitudes. [less ▲]

Detailed reference viewed: 196 (35 ULg)
Full Text
See detailSpurrite, tilleyite and associated minerals in the exoskarn zone from Cornet Hill (Metalliferi Massif, Apuseni Mountains, Romania).
Marincea, Stefan ULg; Dumitras, Delia; Calin, Nicolas et al

in Geophysical Research Abstracts (2012), 14

Detailed reference viewed: 45 (4 ULg)
Full Text
Peer Reviewed
See detailSpace-time dynamics of soil respiration link to the C pool distribution at the hillslope scale
Wiaux, François; Cornelis, Jean-Thomas ULg; Van Oost, Kristof et al

in Geophysical Research Abstracts (2012), 14(EGU2012), 7937

Abstract : A crucial issue in soil C dynamics modelling is to develop models suitable for regional scale, but based on local and short-time scale observations. Recent research has illustrated the strong ... [more ▼]

Abstract : A crucial issue in soil C dynamics modelling is to develop models suitable for regional scale, but based on local and short-time scale observations. Recent research has illustrated the strong linkage between SOC dynamics and landscape processes. There is increasing evidence that lateral fluxes of SOC, sediment and water will further enhance the variability of SOC dynamics, especially on agricultural land. Hence, in this study, we aim to improve our understanding of soil C dynamics by quantifying the soil respiration response of carbon pools at different positions along a slope catena, characterized by different soil moisture and temperature conditions and by different SOC stock and C pool distributions. The study was performed on a hillslope in the belgian loamy belt. Time series of soil moisture, temperature and surface CO2 fluxes were monitored on a regular basis (at least once a week, during spring and autumn 2011) along the hillsope, at the soil surface. At the same positions, soil cores (1 to 1.5 m depth) were collected and analyzed for SOC, C distribution (using a chemical fractionation), mineral oxides (oxalate extractions), pH, and texture. Our results show that substantial lateral transport of soil materials takes place along this hillslope, with a continuous burying of surface C and minerals at the bottom of the slope. This results in the development of a colluvial soil with an increasing SOC stock. This colluvial C stock mainly consists of labile C (66%), and this labile C stock in the colluvium is 3.5 higher than the labile C stock at the other slope positions. This stock is thus poorly stabilized and has a higher potential for mineralization. The other part of this C stock is stabilized by organo-mineral associations (19%) or is recalcitrant C (15%). Compared to the other slope positions, this colluvial stable C stock is significant, as it is 1.5 to 2 times higher. The spatial gradient of the measured soil respiration is consistent with the previous C pool distribution observations along the hillslope, since there is a significant higher respiration at the bottom of the slope (colluvial area) than at the other slope positions. The measured temporal dynamics of the soil respiration is explained by moisture and temperature variations. This measured space-time dynamics, completed with further additional field measurement campaigns, will be the basis for calibrating and validating hillslope scale soil C turn-over models. [less ▲]

Detailed reference viewed: 24 (3 ULg)
Full Text
Peer Reviewed
See detailRole of land use change in landslide-related sediment fluxes in tropical mountain regions
Guns, Marie; Vanacker, Veerle; Demoulin, Alain ULg

in Geophysical Research Abstracts (2012), 14

Detailed reference viewed: 11 (1 ULg)
Full Text
See detailO2/Ar and CH4 measurements in sea ice : clues for the key status of sea ice in the climate system
Zhou, Jiayun; Tison, Jean-Louis; Eicken, Hajo et al

in Geophysical Research Abstracts (2011, April 08), 13

Detailed reference viewed: 29 (7 ULg)
Full Text
See detailCarbon balance of crops: overview of 7 years of investigation
Moureaux, Christine ULg; Dufranne, Delphine ULg; Suleau, Marie ULg et al

in Geophysical Research Abstracts (2011, April 08), 13

Detailed reference viewed: 47 (13 ULg)
Full Text
See detailManagement effects on net ecosystem carbon and GHG budgets at European crop sites
Ceschia, Eric; Béziat, Pierre; Dejoux, Jean-François et al

in Geophysical Research Abstracts (2011, April 08), 13

Detailed reference viewed: 110 (11 ULg)
Full Text
See detailMeasurement and modeling of methanol deposition/emission in a mixed forest
Laffineur, Quentin ULg; Heinesch, Bernard ULg; Amelynck, Crist et al

in Geophysical Research Abstracts (2011, April 07), 13

Detailed reference viewed: 44 (6 ULg)
Full Text
See detailMultilayer Analysis of Soil Respiration and its Isotopic Signature in Forest Ecosystem
Goffin, Stéphanie ULg; Longdoz, Bernard ULg; Maier, Martin et al

in Geophysical Research Abstracts (2011, April 06), 13

Detailed reference viewed: 55 (25 ULg)
Full Text
See detailOn the impact of ionospheric variability and disturbances on GNSS-based positioning applications
Stankov, Stanimir; Wautelet, Gilles ULg; Lejeune, Sandrine et al

in Geophysical Research Abstracts (2011, April), 13(ABS. No EGU2011-12067),

Detailed reference viewed: 36 (5 ULg)
Full Text
Peer Reviewed
See detailA methodology to assess the exactness of Stream Network modeling process on agricultural watersheds
Ouedraogo, Mohamar ULg; Degre, Aurore ULg; Beckers, Eléonore ULg et al

in Geophysical Research Abstracts (2011)

The goal of our study is to evaluate the exactness of stream network modeling process on agricultural watersheds. Agricultural watersheds topography is always changing, making it difficult to be modeled ... [more ▼]

The goal of our study is to evaluate the exactness of stream network modeling process on agricultural watersheds. Agricultural watersheds topography is always changing, making it difficult to be modeled. According to the standard ISO-7078 (ISO-7078, 1985) of the Inernational Organization of Standardization, the exactness of a measurement process or a modeled process can be defined as the difference between results obtained from the measurement process and a reference accepted as the «true value». A small watershed of a dozen hectares size has been surveyed by terrestrial LiDAR (Light Detecting And Ranging) scanner and photogrammetrical techniques to produce a row data of 30 cm resolution. Three interpolation techniques i.e. natural neighbourg, multiquadratic radial basis function and inverse distance weighted have been applied on the original data to create original digital elevation models (DEM) of 1 m resolution. RTK (Real Time Kinematics) GPS (Global Positionning System) ground control points have been surveyed on the watershed to evaluate DEM errors and fit a variogram that is used by a conditional sequencial gaussian simulation model to generate error maps. However, ground control point’s elevations accuracy is depending on the microtopography of parcels in an agricultural watershed. Depending on the crop that is planned by the farmer, the soil tillage will be different, and soil structure and roughness can considerably influence ground control point’s elevation. Analysis of variance and geostatistical methods have been applied on total station and RTK GPS data to estimate intervals in which, ground control points elevations vary. These intervals have been estimated for two parcels that soils are tilled in different ways. These errors are added to the generated errors maps to create final error maps. The final errors maps are added to the original DEM to create likely DEM realizations for the watershed (Temme and al., 2007). Then, two spurious sinks filtering methods (Colson 2006; Lindsay and Creed, 2005) and one flat area treatment method (Jenson and Domingue, 1988) are applied on each DEM realization for preprocessing. Finally, the three common flow direction extraction methods (D8, D-infity and Multiple Flow Direction) are applied on each preprocessed DEM to extract stream Network. The extracted stream network is overlapped with RTK GPS field positioned stream network i.e. a polyline format data. To estimate the exactness of the stream extraction methods, the polyline format is converted in raster format. That allows to compute for each pixel of the observed stream network, the distance to the extracted stream network. Then, for each pixel the mean distance can be calculated, and can be represented through the stream network. LiDAR technology is becoming useful for environment modeling because of his accuracy. Such quantity of data is not free of errors. This research will allow us to estimate the uncertainty of stream network modeled from agricultural watersheds by considering the main sources of errors that are propagated through computing processes. [less ▲]

Detailed reference viewed: 89 (13 ULg)
Full Text
Peer Reviewed
See detailErosion and rainfall erosivity under climate change: rainfall simulation and soil losses measurement at field scale
Kummert, Nora ULg; Beckers, Eléonore ULg; Degre, Aurore ULg

in Geophysical Research Abstracts (2011), 13

Soil and water conservation is a big issue of this century. The soil is a non renewable resource. As we know, the change in climate brings more short erosive rainfall with a high capacity to take away the ... [more ▼]

Soil and water conservation is a big issue of this century. The soil is a non renewable resource. As we know, the change in climate brings more short erosive rainfall with a high capacity to take away the topsoil. Moreover, topsoil contains all the nutrients the plants needs. It is now essential that we found a new balance between productivity and durability. Impacts of new agricultural techniques on soil structure are already studied in different countries (i.e. Beckers et al., 2010; Walh et al., 2004; Malone et al., 2003). But what are the impacts on erosion? That is a question with few answers. And this is where our experiment comes, in order to link erosion and future erosion with management practices. Two ways exist to act against soil losses: enhancing soil structure or increasing vegetation cover. Our study aims at measuring soil losses and runoff under different practices and for a future scenario of climate change. This study explores new practices and measures their effects on erosion and runoff under a future rainfall. We focus on two cultures: sugar beet and maize. Each is tested under three different systems. For sugar beet soil structure impact is monitored: three tillage systems are tested: winter ploughing, fall ploughing and fall topsoiling. For maize vegetation cover impact is monitored: three seeding systems are studied: classical seeding (75 cm interrow), classical seeding with Ray-grass seeding in the interrows, and distributed seeding (obtained with a grains seeder). Rainfall simulation has been chosen for the study so the impacts of climate change can also be tested. A future rainfall was calculated based on a climate change scenario for Belgium (CCI-HYDR project, Willems, 2006-2010). A basic current rainfall of 100 years return period and 30 minutes duration (correspondent intensity: 70 mm/h) entered into the model gives the new rainfall. After the application of the scenario, the new rainfall has an intensity of 80 mm/h. This is our future rainfall used in this experiment. The simulations of this rainfall were carried on during the main crop season (between June and August). Three simulations were performed on sugar beet and two on maize on plots with the dimensions: 3 m length and 90 cm and 120 cm width respectively for sugar beet and maize (corresponding to two rows of the main culture). During each simulation soil losses and runoff quantities were measured. From the first year experiment, some tendencies can be observed. The topsoiling on sugar beet culture seems to produce less soil losses when the winter ploughing gives the lower quantities of runoff. The distributed seeding for the maize culture gives the lower rates for both soil losses and runoff quantities. Our experiment will be repeated at least for the next two years with new future rainfall to be tested. The climatic conditions are an important factor which can modify the behavior of soil response under rainfall event. More research has to be done in order to improve our knowledge of runoff and erosion phenomenon at smaller scale. [less ▲]

Detailed reference viewed: 143 (44 ULg)
Full Text
Peer Reviewed
See detailStatistical analysis of low-flow based on short time series. The case of Wallonia
Verstraete, Arnaud ULg; Gailliez, Sébastien; Degre, Aurore ULg

in Geophysical Research Abstracts (2011), 13

The floods have always been the main concern resulting of extreme weather conditions. Now droughts and low flows are more and more recognized as risk situations due to the huge consequences of water ... [more ▼]

The floods have always been the main concern resulting of extreme weather conditions. Now droughts and low flows are more and more recognized as risk situations due to the huge consequences of water shortage. Furthermore, the changing climate context constitutes a new threat even if the uncertainty in low-flows evolution remains high. In Wallonia (Southern part of Belgium), a knowledge gap remains on statistical analysis of low-flows. In this paper, we present a study of historical data in Walloon Region and the first steps of their statistical analysis. Wallonia is one of the three regions of Belgian federal state. It covers an area of 17000 km² and spreads on 4 districts (Meuse, Escaut, Rhin, Senne). The watercourses are divided in navigable watercourses (700km), not navigable watercourses that are listed in 3 categories (14300km) and streams that are not navigable and not listed (4000km). Hydrological monitoring has a short history in Wallonia. The first monitoring site was installed in 1960. It consisted in a limnimetric scale and daily manual readings. Since 1974, hourly data are recorded. The number of measurement sites reached 244 stations in 2011. About 60 % of the monitoring sites have less than 20 years of hourly data. A qualitative analysis of monitoring stations led us to disregard 184 stations. The main quality problems were important discharge rating curve extrapolation, algae development in summer or low flow inferior to 5l/s. In preparation for a statistical analysis of low-flows, the old manual daily readings were analyzed. Unusable in high flow situations, they still hold practical and usable information during drought. This analysis allowed us to extend the registration period up of 7 stations and to recover 16 stations. There were lots of missing data during the 1960-1994 period, due to a poor management of the monitoring network. A yearly hydrograph analysis leads us to keep years of partial measurement when the gaps were found to be out of the low-flow period. The monitoring sites presenting more than 20 years of readings were selected for the statistical analysis. A homogeneity test was performed. Finally 64 out of 244 monitoring sites are kept for the frequency analysis. The indicators used to characterize low-flows are the popular Q95 and MAM7. Five below bounded distributions are tested with the HYFRAN software: Weibull (2 parameters), log-normal 2 parameters and 3 parameters, Gamma and Pearson type III. The parameters of the laws are estimated by the maximum likelihood estimation. The selection of the three best laws is performed for each site thanks to three Bayesian criterions proposed by HYFRAN. Then the distribution that fits the best the data is visually chosen. The results of the adjustment method are the same for the two indicators. The Gamma distribution is the most used followed by the lognormal with 2 parameters. However in some cases a law of three parameters is more appropriate. This preliminary work gives a first analysis of low-flows statistics in Wallonia. Yet a lot of missing data or short recording duration still limits our knowledge, this analysis allows us to progress towards best management practices in rivers and watersheds. [less ▲]

Detailed reference viewed: 83 (27 ULg)
Full Text
Peer Reviewed
See detailImpact of thresholding techniques on X-ray soil microtomogram analyses
Beckers, Eléonore ULg; Léonard, Angélique ULg; Beekkerk van Ruth, Jöran ULg et al

in Geophysical Research Abstracts (2011), 13

Using X-ray microtomography, 3D soil structure can be visualised and analysed through useful factors like pore size distribution, shape, connectivity, orientation, etc. X-ray scans yield grey-level 2D ... [more ▼]

Using X-ray microtomography, 3D soil structure can be visualised and analysed through useful factors like pore size distribution, shape, connectivity, orientation, etc. X-ray scans yield grey-level 2D images, which can be recombined to form 3D structures. Treatments of the grey-level images can consist of either a binarization -distinguishing soil and pores- or a permeability level attribution directly linked to the grey-level values. The latter leads to problems in order to assign a permeability for each point (in soil a same grey level value can be assigned to points with a different permeability), as well as to analyse the 3D structure. On the other hand, treatment of black and white 3D structures is well-handled. However, the impact of the choice of one thresholding technique on the resulting images has already been demonstrated. Moreover, thresholding methods are various and numerous. Many of them are based on the image histogram analysis. But because of the soil complexity, the relevance of these techniques becomes debatable, with a risk of producing non reliable images. We propose to palliate this with a simple new algorithm based on physical measurements: it uses a loop fixing the threshold value in order to match the measured porosity for each sample. In this communication, our point is to highlight the impact of different thresholding techniques on the analysis and interpretation of our soil microtomograms. The underlying questions could be: Does the thresholding method influence our conclusions? Are the results depending on the sample itself or on the methodology? In order to answer these questions we tested the Otsu technique and our physically based algorithm. Soils samples were removed from the upper layer (Ap horizon) of a silty soil (Gentinnes, Brabant Walloon, Belgium) in plots with different management practices. In fact, since 2004, the field has been cultivated in conventional tillage (CT) or reduced tillage (RT). In order to empty the meso- and macroporosity, samples were placed under a 1.5 MPa pressure (Richards apparatus). Samples were then scanned by X-ray microtomography using a Skyscan-1172 high-resolution desktop micro-CT system (Skyscan, Kontich, Belgium). The cone beam source operated at 100 kV, using an aluminium filter. The detector configuration, i.e. 1048x2000 pixels with a 16-bit X-ray camera, and the distance source-object-camera were adjusted to produce images with a pixel size of 17 µm. Porosity was measured for each scanned sample. Then the threshold methods -the Otsu technique on one hand and our developed algorithm on the other - were applied, and morphological factors were calculated for both methods. A comparison of the first results shows a threshold influence on average porosity and number of pores, but also on connectivity factors and size distribution. The apparent porosity of the images, as well as connectivity, is underestimated with the Otsu technique. Despite the fact that the changes induced by thresholding are more important for RT than CT, global conclusions about the comparison of these agricultural practices are approximately the same in this case. However, differences between tillage systems are less important with the Otsu method, confirming the impact of choosing the adapted threshold method. [less ▲]

Detailed reference viewed: 97 (36 ULg)