References of "Astronomy and Astrophysics"
     in
Bookmark and Share    
Full Text
Peer Reviewed
See detailThe IACOB project. IV. New predictions for high-degree non-radial mode instability domains in massive stars and their connection with macroturbulent broadening
Godart, Mélanie ULg; Simón-Díaz, S.; Herrero, A. et al

in Astronomy and Astrophysics (2016), 597

Context. Asteroseismology is a powerful tool to access the internal structure of stars. Apart from the important impact of theoretical developments, progress in this field has been commonly associated ... [more ▼]

Context. Asteroseismology is a powerful tool to access the internal structure of stars. Apart from the important impact of theoretical developments, progress in this field has been commonly associated with the analysis of time-resolved observations. Recently, the so-called macroturbulent broadening has been proposed as a complementary and less expensive way - in terms of observational time - to investigate pulsations in massive stars. <BR /> Aims: We assess to what extent this ubiquitous non-rotational broadening component which shapes the line profiles of O stars and B supergiants is a spectroscopic signature of pulsation modes driven by a heat mechanism. <BR /> Methods: We compute stellar main-sequence and post-main-sequence models from 3 to 70 M[SUB]⊙[/SUB] with the ATON stellar evolution code, and determine the instability domains for heat-driven modes for degrees ℓ = 1-20 using the adiabatic and non-adiabatic codes LOSC and MAD. We use the observational material compiled in the framework of the IACOB project to investigate possible correlations between the single snapshot line-broadening properties of a sample of ≈260 O and B-type stars and their location inside or outside the various predicted instability domains. <BR /> Results: We present an homogeneous prediction for the non-radial instability domains of massive stars for degree ℓ up to 20. We provide a global picture of what to expect from an observational point of view in terms of the frequency range of excited modes, and we investigate the behavior of the instabilities with respect to stellar evolution and the degree of the mode. Furthermore, our pulsational stability analysis, once compared to the empirical results, indicates that stellar oscillations originated by a heat mechanism cannot explain alone the occurrence of the large non-rotational line-broadening component commonly detected in the O star and B supergiant domain. Based on observations made with the Nordic Optical Telescope, operated by NOTSA, and the Mercator Telescope, operated by the Flemish Community, both at the Observatorio del Roque de los Muchachos (La Palma, Spain) of the Instituto de Astrofísica de Canarias. [less ▲]

Detailed reference viewed: 12 (2 ULg)
Full Text
Peer Reviewed
See detailThe SHARDDS survey: First resolved image of the HD 114082 debris disk in the Lower Centaurus Crux with SPHERE
Wahhaj, Zahed; Milli, Julien; Kennedy, Grant et al

in Astronomy and Astrophysics (2016), 596

We present the first resolved image of the debris disk around the 16 ± 8 Myr old star, HD 114082. The observation was made in the H-band using the SPHERE instrument. The star is at a distance of 92 ± 6 pc ... [more ▼]

We present the first resolved image of the debris disk around the 16 ± 8 Myr old star, HD 114082. The observation was made in the H-band using the SPHERE instrument. The star is at a distance of 92 ± 6 pc in the Lower Centaurus Crux association. Using a Markov chain Monte Carlo analysis, we determined that the debris is likely in the form of a dust ring with an inner edge of 27.7[SUP]+2.8[/SUP][SUB]-3.5[/SUB] au, position angle -74.3°[SUP]+0.5[/SUP][SUB]-1.5[/SUB], and an inclination with respect to the line of sight of 6.7°[SUP]+3.8[/SUP][SUB]-0.4[/SUB]. The disk imaged in scattered light has a surface density that is declining with radius of r[SUP]-4[/SUP], which is steeper than expected for grain blowout by radiation pressure. We find only marginal evidence (2σ) of eccentricity and rule out planets more massive than 1.0 M[SUB]Jup[/SUB] orbiting within 1 au of the inner edge of the ring, since such a planet would have disrupted the disk. The disk has roughly the same fractional disk luminosity (L[SUB]disk[/SUB]/L[SUB]∗[/SUB] = 3.3 × 10[SUP]-3[/SUP]) as HR 4796 A and β Pictoris, however it was not detected by previous instrument facilities most likely because of its small angular size (radius 0.4''), low albedo ( 0.2), and low scattering efficiency far from the star due to high scattering anisotropy. With the arrival of extreme adaptive optics systems, such as SPHERE and GPI, the morphology of smaller, fainter, and more distant debris disks are being revealed, providing clues to planet-disk interactions in young protoplanetary systems. The reduced images are only available at the CDS via anonymous ftp to <A href="http://cdsarc.u-strasbg.fr">http://cdsarc.u-strasbg.fr</A> (<A href="http://130.79.128.5">http://130.79.128.5</A>) or via <A href="http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/596/L4">http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/596/L4</A> [less ▲]

Detailed reference viewed: 7 (1 ULg)
Full Text
Peer Reviewed
See detailOptimizing the subwavelength grating of L-band annular groove phase masks for high coronagraphic performance
Vargas Catalán, E.; Huby, Elsa ULg; Forsberg, P. et al

in Astronomy and Astrophysics (2016), 595

Context. The annular groove phase mask (AGPM) is one possible implementation of the vector vortex coronagraph, where the helical phase ramp is produced by a concentric subwavelength grating. For several ... [more ▼]

Context. The annular groove phase mask (AGPM) is one possible implementation of the vector vortex coronagraph, where the helical phase ramp is produced by a concentric subwavelength grating. For several years, we have been manufacturing AGPMs by etching gratings into synthetic diamond substrates using inductively coupled plasma etching. <BR /> Aims: We aim to design, fabricate, optimize, and evaluate new L-band AGPMs that reach the highest possible coronagraphic performance, for applications in current and forthcoming infrared high-contrast imagers. <BR /> Methods: Rigorous coupled wave analysis (RCWA) is used for designing the subwavelength grating of the phase mask. Coronagraphic performance evaluation is performed on a dedicated optical test bench. The experimental results of the performance evaluation are then used to accurately determine the actual profile of the fabricated gratings, based on RCWA modeling. <BR /> Results: The AGPM coronagraphic performance is very sensitive to small errors in etch depth and grating profile. Most of the fabricated components therefore show moderate performance in terms of starlight rejection (a few 100:1 in the best cases). Here we present new processes for re-etching the fabricated components in order to optimize the parameters of the grating and hence significantly increase their coronagraphic performance. Starlight rejection up to 1000:1 is demonstrated in a broadband L filter on the coronagraphic test bench, which corresponds to a raw contrast of about 10[SUP]-5[/SUP] at two resolution elements from the star for a perfect input wave front on a circular, unobstructed aperture. <BR /> Conclusions: Thanks to their exquisite performance, our latest L-band AGPMs are good candidates for installation in state of the art and future high-contrast thermal infrared imagers, such as METIS for the E-ELT. [less ▲]

Detailed reference viewed: 24 (6 ULg)
Full Text
Peer Reviewed
See detailThe puzzling properties of the magnetic O star Tr16-22
Nazé, Yaël ULg; Barbá, Rodolfo; Bagnulo, Stefano et al

in Astronomy and Astrophysics (2016), 596(A44), 1-7

Context. The detection of bright, hard, and variable X-ray emission in Tr16-22 prompted spectropolarimetric observations of this star, which in turn led to the discovery of a surface magnetic field. <BR ... [more ▼]

Context. The detection of bright, hard, and variable X-ray emission in Tr16-22 prompted spectropolarimetric observations of this star, which in turn led to the discovery of a surface magnetic field. <BR /> Aims: We want to further constrain the properties of this star, in particular to verify whether X-ray variations are correlated to changes in optical emission lines and magnetic field strength, as expected from the oblique rotator model that is widely accepted for magnetic O stars. <BR /> Methods: We have obtained new low-resolution spectropolarimetric and long-term high-resolution spectroscopic monitoring of Tr16-22, and we also analyse new, serendipitous X-ray data. <BR /> Results: The new X-ray observations are consistent with previous data, but their addition does not help to solve the ambiguity in the variation timescale because of numerous aliases. No obvious periodicity or any large variations are detected in the spectropolarimetric data of Tr16-22 obtained over three months. The derived field values appear to be in line with previous measurements, suggesting constancy of the field (though the possibility of small, short-term field variations cannot be excluded). Variations in the equivalent widths of Hα are very small, and they do not appear to be related to the X-ray timescale; the overall lack of large variations in optical emission lines is consistent with the magnetic field constancy. In addition, variations of the radial velocities indicate that Tr16-22 is probably a SB1 binary with a very long period. <BR /> Conclusions: Our new measurements of optical emission lines and magnetic field strength do not show an obvious correlation with X-ray variations. Our current data thus cannot be interpreted in terms of the common model, which assumes the electromagnetic emission associated with a wind confined by a dipolar field tilted with respect to the rotation axis. However, the sampling is imperfect and new data are needed to further constrain the actual periodicity of the various observed phenomena. If inconsistencies are confirmed, then we will need to consider alternative scenarios. Based on XMM-Newton observations (ObsIDs 0691970101, 0742850301, 0742850401, 0762910401) and ESO data (Prog. 386.D-0624A, 086.D-0997B, 089.D-0975A, 091.D-0090B, 095.D-0082).The reduced polarisation spectra (as ascii files) are only available at the CDS via anonymous ftp to <A href="http://cdsarc.u-strasbg.fr">http://cdsarc.u-strasbg.fr</A> (<A href="http://130.79.128.5">http://130.79.128.5</A>) or via <A href="http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/596/A44">http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/596/A44</A> [less ▲]

Detailed reference viewed: 20 (3 ULg)
Full Text
Peer Reviewed
See detailThe Gaia mission
Gaia Collaboration; Prusti, T.; de Bruijne, J. H. J. et al

in Astronomy and Astrophysics (2016), 595

Gaia is a cornerstone mission in the science programme of the EuropeanSpace Agency (ESA). The spacecraft construction was approved in 2006, following a study in which the original interferometric concept ... [more ▼]

Gaia is a cornerstone mission in the science programme of the EuropeanSpace Agency (ESA). The spacecraft construction was approved in 2006, following a study in which the original interferometric concept was changed to a direct-imaging approach. Both the spacecraft and the payload were built by European industry. The involvement of the scientific community focusses on data processing for which the international Gaia Data Processing and Analysis Consortium (DPAC) was selected in 2007. Gaia was launched on 19 December 2013 and arrived at its operating point, the second Lagrange point of the Sun-Earth-Moon system, a few weeks later. The commissioning of the spacecraft and payload was completed on 19 July 2014. The nominal five-year mission started with four weeks of special, ecliptic-pole scanning and subsequently transferred into full-sky scanning mode. We recall the scientific goals of Gaia and give a description of the as-built spacecraft that is currently (mid-2016) being operated to achieve these goals. We pay special attention to the payload module, the performance of which is closely related to the scientific performance of the mission. We provide a summary of the commissioning activities and findings, followed by a description of the routine operational mode. We summarise scientific performance estimates on the basis of in-orbit operations. Several intermediate Gaia data releases are planned and the data can be retrieved from the Gaia Archive, which is available through the Gaia home page. <A href="http://www.cosmos.esa.int/gaia">http://www.cosmos.esa.int/gaia</A> [less ▲]

Detailed reference viewed: 45 (6 ULg)
Full Text
Peer Reviewed
See detailGaia Data Release 1. Summary of the astrometric, photometric, and survey properties
Gaia Collaboration; Brown, A. G. A.; Vallenari, A. et al

in Astronomy and Astrophysics (2016), 595

Context. At about 1000 days after the launch of Gaia we present the first Gaia data release, Gaia DR1, consisting of astrometry and photometry for over 1 billion sources brighter than magnitude 20.7. <BR ... [more ▼]

Context. At about 1000 days after the launch of Gaia we present the first Gaia data release, Gaia DR1, consisting of astrometry and photometry for over 1 billion sources brighter than magnitude 20.7. <BR /> Aims: A summary of Gaia DR1 is presented along with illustrations of the scientific quality of the data, followed by a discussion of the limitations due to the preliminary nature of this release. <BR /> Methods: The raw data collected by Gaia during the first 14 months of the mission have been processed by the Gaia Data Processing and Analysis Consortium (DPAC) and turned into an astrometric and photometric catalogue. <BR /> Results: Gaia DR1 consists of three components: a primary astrometric data set which contains the positions, parallaxes, and mean proper motions for about 2 million of the brightest stars in common with the Hipparcos and Tycho-2 catalogues - a realisation of the Tycho-Gaia Astrometric Solution (TGAS) - and a secondary astrometric data set containing the positions for an additional 1.1 billion sources. The second component is the photometric data set, consisting of mean G-band magnitudes for all sources. The G-band light curves and the characteristics of 3000 Cepheid and RR Lyrae stars, observed at high cadence around the south ecliptic pole, form the third component. For the primary astrometric data set the typical uncertainty is about 0.3 mas for the positions and parallaxes, and about 1 mas yr[SUP]-1[/SUP] for the proper motions. A systematic component of 0.3 mas should be added to the parallax uncertainties. For the subset of 94 000 Hipparcos stars in the primary data set, the proper motions are much more precise at about 0.06 mas yr[SUP]-1[/SUP]. For the secondary astrometric data set, the typical uncertainty of the positions is 10 mas. The median uncertainties on the mean G-band magnitudes range from the mmag level to 0.03 mag over the magnitude range 5 to 20.7. <BR /> Conclusions: Gaia DR1 is an important milestone ahead of the next Gaia data release, which will feature five-parameter astrometry for all sources. Extensive validation shows that Gaia DR1 represents a major advance in the mapping of the heavens and the availability of basic stellar data that underpin observational astrophysics. Nevertheless, the very preliminary nature of this first Gaia data release does lead to a number of important limitations to the data quality which should be carefully considered before drawing conclusions from the data. [less ▲]

Detailed reference viewed: 28 (4 ULg)
Full Text
Peer Reviewed
See detailA near-infrared interferometric survey of debris-disc stars. V. PIONIER search for variability
Ertel, S.; Defrere, Denis ULg; Absil, Olivier ULg et al

in Astronomy and Astrophysics (2016), 595

Context. Extended circumstellar emission has been detected within a few 100 milli-arcsec around ≳10% of nearby main sequence stars using near-infrared interferometry. Follow-up observations using other ... [more ▼]

Context. Extended circumstellar emission has been detected within a few 100 milli-arcsec around ≳10% of nearby main sequence stars using near-infrared interferometry. Follow-up observations using other techniques, should they yield similar results or non-detections, can provide strong constraints on the origin of the emission. They can also reveal the variability of the phenomenon. Aims: We aim to demonstrate the persistence of the phenomenon over the timescale of a few years and to search for variability of our previously detected excesses. Methods: Using Very Large Telescope Interferometer (VLTI)/Precision Integrated Optics Near Infrared ExpeRiment (PIONIER) in H band we have carried out multi-epoch observations of the stars for which a near-infrared excess was previously detected using the same observation technique and instrument. The detection rates and distribution of the excesses from our original survey and the follow-up observations are compared statistically. A search for variability of the excesses in our time series is carried out based on the level of the broadband excesses. Results: In 12 of 16 follow-up observations, an excess is re-detected with a significance of > 2σ, and in 7 of 16 follow-up observations significant excess (> 3σ) is re-detected. We statistically demonstrate with very high confidence that the phenomenon persists for the majority of the systems. We also present the first detection of potential variability in two sources. Conclusions: We conclude that the phenomenon responsible for the excesses persists over the timescale of a few years for the majority of the systems. However, we also find that variability intrinsic to a target can cause it to have no significant excess at the time of a specific observation. [less ▲]

Detailed reference viewed: 25 (9 ULg)
Full Text
Peer Reviewed
See detailExocomet signatures around the A-shell star φ Leonis?
Eiroa, C.; Rebollido, I.; Montesinos, B. et al

in Astronomy and Astrophysics (2016), 594

We present an intensive monitoring of high-resolution spectra of the Ca ii K line in the A7IV shell star φ Leo at very short (minutes, hours), short (night to night), and medium (weeks, months) timescales ... [more ▼]

We present an intensive monitoring of high-resolution spectra of the Ca ii K line in the A7IV shell star φ Leo at very short (minutes, hours), short (night to night), and medium (weeks, months) timescales. The spectra show remarkable variable absorptions on timescales of hours, days, and months. The characteristics of these sporadic events are very similar to most that are observed toward the debris disk host star β Pic, which are commonly interpreted as signs of the evaporation of solid, comet-like bodies grazing or falling onto the star. Therefore, our results suggest the presence of solid bodies around φ Leo. To our knowledge, with the exception of β Pic, our monitoring has the best time resolution at the mentioned timescales for a star with events attributed to exocomets. Assuming the cometary scenario and considering the timescales of our monitoring, our results indicate that φ Leo presents the richest environment with comet-like events known to date, second only to β Pic. [less ▲]

Detailed reference viewed: 14 (2 ULg)
Full Text
Peer Reviewed
See detailX-ray and optical spectroscopy of the massive young open cluster IC 1805
Rauw, Grégor ULg; Nazé, Yaël ULg

in Astronomy and Astrophysics (2016), 594(A82), 19

Context. Very young open clusters are ideal places to study the X-ray properties of a homogeneous population of early-type stars. In this respect, the IC 1805 open cluster is very interesting as it hosts ... [more ▼]

Context. Very young open clusters are ideal places to study the X-ray properties of a homogeneous population of early-type stars. In this respect, the IC 1805 open cluster is very interesting as it hosts the O4 If+ star HD 15570 thought to be in an evolutionary stage intermediate between a normal O-star and a Wolf-Rayet star. Aims: Such a star could provide a test for theoretical models aiming at explaining the empirical scaling relation between the X-ray and bolometric luminosities of O-type stars. Methods: We have observed IC 1805 with XMM-Newton and further collected optical spectroscopy of some of the O-star members of the cluster. Results: The optical spectra allow us to revisit the orbital solutions of BD+60° 497 and HD 15558, and provide the first evidence of binarity for BD+60° 498. X-ray emission from colliding winds does not appear to play an important role among the O-stars of IC 1805. Notably, the X-ray fluxes do not vary significantly between archival X-ray observations and our XMM-Newton pointing. The very fast rotator BD+60° 513, and to a lesser extent the O4 If+ star HD 15570 appear somewhat underluminous. Whilst the underluminosity of HD 15570 is only marginally significant, its amplitude is found to be compatible with theoretical expectations based on its stellar and wind properties. A number of other X-ray sources are detected in the field, and the brightest objects, many of which are likely low-mass pre-main sequence stars, are analyzed in detail. [less ▲]

Detailed reference viewed: 17 (4 ULg)
Full Text
Peer Reviewed
See detailApsidal motion in the massive binary HD 152218
Rauw, Grégor ULg; Rosu, S.; Noels-Grötsch, Arlette ULg et al

in Astronomy and Astrophysics (2016), 594(A33), 1-12

Massive binary systems are important laboratories in which to probe the properties of massive stars and stellar physics in general. In this context, we analysed optical spectroscopy and photometry of the ... [more ▼]

Massive binary systems are important laboratories in which to probe the properties of massive stars and stellar physics in general. In this context, we analysed optical spectroscopy and photometry of the eccentric short-period early-type binary HD 152218 in the young open cluster NGC 6231. We reconstructed the spectra of the individual stars using a disentangling code. The individual spectra were then compared with synthetic spectra obtained with the CMFGEN model atmosphere code. We furthermore analysed the light curve of the binary and used it to constrain the orbital inclination and to derive absolute masses of (19.8 ± 1.5) and (15.0 ± 1.1) M⊙. Combining radial velocity measurements from over 60 yr, we show that the system displays apsidal motion at a rate of (2.04 ± .24)°/yr. Solving the Clairaut-Radau equation, we used stellar evolution models, obtained with the CLES code, to compute the internal structure constants and to evaluate the theoretically predicted rate of apsidal motion as a function of stellar age and primary mass. In this way, we determine an age of 5.8 ± 0.6 Myr for HD 152218, which is towards the higher end of, but compatible with, the range of ages of the massive star population of NGC 6231 as determined from isochrone fitting. [less ▲]

Detailed reference viewed: 39 (2 ULg)
Full Text
Peer Reviewed
See detailTracing back the evolution of the candidate LBV HD 168625
Mahy, Laurent ULg; Hutsemekers, Damien ULg; Royer, P. et al

in Astronomy and Astrophysics (2016), 594

Context. The luminous blue variable phase is a crucial transitory phase that is not clearly understood in the massive star evolution. <BR /> Aims: We have obtained far-infrared Herschel/PACS imaging and ... [more ▼]

Context. The luminous blue variable phase is a crucial transitory phase that is not clearly understood in the massive star evolution. <BR /> Aims: We have obtained far-infrared Herschel/PACS imaging and spectroscopic observations of the nebula surrounding the candidate LBV HD 168625. By combining these data with optical spectra of the central star, we want to constrain the abundances in the nebula and in the star and compare them to trace back the evolution of this object. <BR /> Methods: We use the CMFGEN atmosphere code to determine the fundamental parameters and the CNO abundances of the central star whilst the abundances of the nebula are derived from the emission lines present in the Herschel/PACS spectrum. <BR /> Results: The far-infrared images show a nebula composed of an elliptical ring/torus of ejecta with a ESE-WNW axis and of a second perpendicular bipolar structure composed of empty caps/rings. We detect equatorial shells composed of dust and ionized material with different sizes when observed at different wavelengths, and bipolar caps more of less separated from the central star in Hα and mid-IR images. This complex global structure seems to show two different inclinations: ~40° for the equatorial torus and ~ 60° for the bipolar ejections. From the Herschel/PACS spectrum, we determine nebular abundances of N/H = 4.1 ± 0.8 × 10[SUP]-4[/SUP] and , as well as a mass of ionized gas of 0.17 ± 0.04 M[SUB]⊙[/SUB] and a neutral hydrogen mass of about 1.0 ± 0.3 M[SUB]⊙[/SUB] which dominates. Analysis of the central star reveals T[SUB]eff[/SUB] = 14 000 ± 2000 K, log g = 1.74 ± 0.05 and log (L/L[SUB]⊙[/SUB]) = 5.58 ± 0.11. We derive stellar CNO abundances of about N/H = 5.0 ± 1.5 × 10[SUP]-4[/SUP], C/H = 1.4 ± 0.5 × 10[SUP]-4[/SUP] and O/H = 3.5 ± 1.0 × 10[SUP]-4[/SUP], not significantly different from nebular abundances. All these measurements taken together are compatible with the evolutionary tracks of a star with an initial mass between 28 and 33 M[SUB]⊙[/SUB] and with a critical rotational rate between 0.3 and 0.4 that has lost its material during or just after the blue supergiant phase. Based in part on observations taken by Herschel satellite. Herschel is an ESA space observatory with science instruments provided by European-led Principal Investigator consortia and with important participation from NASA.Based in part on observations collected at the European Southern Observatory, in Chile. [less ▲]

Detailed reference viewed: 20 (7 ULg)
Full Text
Peer Reviewed
See detailDiscovery of WASP-113b and WASP-114b, two inflated hot-Jupiters with contrasting densities
Barros, S. C. C.; Brown, D. J. A.; Hébrard, G. et al

in Astronomy and Astrophysics (2016), 593

We present the discovery and characterisation of the exoplanets WASP-113b and WASP-114b by the WASP survey, {\it SOPHIE} and {\it CORALIE}. The planetary nature of the systems was established by ... [more ▼]

We present the discovery and characterisation of the exoplanets WASP-113b and WASP-114b by the WASP survey, {\it SOPHIE} and {\it CORALIE}. The planetary nature of the systems was established by performing follow-up photometric and spectroscopic observations. The follow-up data were combined with the WASP-photometry and analysed with an MCMC code to obtain system parameters. The host stars WASP-113 and WASP-114 are very similar. They are both early G-type stars with an effective temperature of $\sim 5900\,$K, [Fe/H]$\sim 0.12$ and $T_{\rm eff}$ $\sim 4.1$dex. However, WASP-113 is older than WASP-114. Although the planetary companions have similar radii, WASP-114b is almost 4 times heavier than WASP-113b. WASP-113b has a mass of $0.48\,$ $\mathrm{M}_{\rm Jup}$ and an orbital period of $\sim 4.5\,$days; WASP-114b has a mass of $1.77\,$ $\mathrm{M}_{\rm Jup}$ and an orbital period of $\sim 1.5\,$days. Both planets have inflated radii, in particular WASP-113 with a radius anomaly of $\Re=0.35$. The high scale height of WASP-113b ($\sim 950$ km ) makes it a good target for follow-up atmospheric observations. [less ▲]

Detailed reference viewed: 24 (2 ULg)
Full Text
Peer Reviewed
See detailEvidence of magnetic field decay in massive main-sequence stars
Fossati, L.; Schneider, F. R. N.; Castro, N. et al

in Astronomy and Astrophysics (2016), 592

A significant fraction of massive main-sequence stars show strong, large-scale magnetic fields. The origin of these fields, their lifetimes, and their role in shaping the characteristics and evolution of ... [more ▼]

A significant fraction of massive main-sequence stars show strong, large-scale magnetic fields. The origin of these fields, their lifetimes, and their role in shaping the characteristics and evolution of massive stars are currently not well understood. We compile a catalogue of 389 massive main-sequence stars, 61 of which are magnetic, and derive their fundamental parameters and ages. The two samples contain stars brighter than magnitude 9 in the V-band and range in mass between 5 and 100 M[SUB]⊙[/SUB]. We find that the fractional main-sequence age distribution of all considered stars follows what is expected for a magnitude limited sample, while that of magnetic stars shows a clear decrease towards the end of the main sequence. This dearth of old magnetic stars is independent of the choice of adopted stellar evolution tracks, and appears to become more prominent when considering only the most massive stars. We show that the decreasing trend in the distribution is significantly stronger than expected from magnetic flux conservation. We also find that binary rejuvenation and magnetic suppression of core convection are unlikely to be responsible for the observed lack of older magnetic massive stars, and conclude that its most probable cause is the decay of the magnetic field, over a time span longer than the stellar lifetime for the lowest considered masses, and shorter for the highest masses. We then investigate the spin-down ages of the slowly rotating magnetic massive stars and find them to exceed the stellar ages by far in many cases. The high fraction of very slowly rotating magnetic stars thus provides an independent argument for a decay of the magnetic fields. [less ▲]

Detailed reference viewed: 18 (3 ULg)
Full Text
Peer Reviewed
See detailThe different origins of high- and low-ionization broad emission lines revealed by gravitational microlensing in the Einstein cross
Braibant, Lorraine ULg; Hutsemekers, Damien ULg; Sluse, Dominique ULg et al

in Astronomy and Astrophysics (2016), 592

We investigate the kinematics and ionization structure of the broad emission line region of the gravitationally lensed quasar QSO2237+0305 (the Einstein cross) using differential microlensing in the high ... [more ▼]

We investigate the kinematics and ionization structure of the broad emission line region of the gravitationally lensed quasar QSO2237+0305 (the Einstein cross) using differential microlensing in the high- and low-ionization broad emission lines. We combine visible and near-infrared spectra of the four images of the lensed quasar and detect a large-amplitude microlensing effect distorting the high-ionization CIV and low-ionization Hα line profiles in image A. While microlensing only magnifies the red wing of the Balmer line, it symmetrically magnifies the wings of the CIV emission line. Given that the same microlensing pattern magnifies both the high- and low-ionization broad emission line regions, these dissimilar distortions of the line profiles suggest that the high- and low-ionization regions are governed by different kinematics. Since this quasar is likely viewed at intermediate inclination, we argue that the differential magnification of the blue and red wings of Hα favors a flattened, virialized, low-ionization region whereas the symmetric microlensing effect measured in CIV can be reproduced by an emission line formed in a polar wind, without the need of fine-tuned caustic configurations. [less ▲]

Detailed reference viewed: 15 (4 ULg)
Full Text
Peer Reviewed
See detailFive transiting hot Jupiters discovered using WASP-South, Euler, and TRAPPIST: WASP-119 b, WASP-124 b, WASP-126 b, WASP-129 b, and WASP-133 b
Maxted, P. F. L.; Anderson, D. R.; Collier Cameron, A. et al

in Astronomy and Astrophysics (2016), 591

We have used photometry from the WASP-South instrument to identify 5 stars showing planet-like transits in their light curves. The planetary nature of the companions to these stars has been confirmed ... [more ▼]

We have used photometry from the WASP-South instrument to identify 5 stars showing planet-like transits in their light curves. The planetary nature of the companions to these stars has been confirmed using photometry from the EulerCam instrument on the Swiss Euler 1.2-m telescope and the TRAPPIST telescope, and spectroscopy obtained with the CORALIE spectrograph. The planets discovered are hot Jupiter systems with orbital periods in the range 2.17 to 5.75 days, masses from 0.3 M[SUB]Jup[/SUB] to 1.2 M[SUB]Jup[/SUB] and with radii from 1 R[SUB]Jup[/SUB] to 1.5 R[SUB]Jup[/SUB]. These planets orbit bright stars (V = 11-13) with spectral types in the range F9 to G4. WASP-126 is the brightest planetary system in this sample and hosts a low-mass planet with a large radius (0.3 M[SUB]Jup[/SUB],0.95 R[SUB]Jup[/SUB]), making it a good target for transmission spectroscopy. The high density of WASP-129 A suggests that it is a helium-rich star similar to HAT-P-11 A. WASP-133 A has an enhanced surface lithium abundance compared to other old G-type stars, particularly other planet host stars. These planetary systems are good targets for follow-up observations with ground-based and space-based facilities to study their atmospheric and dynamical properties. Full Tables 2 and 3 are only available at the CDS via anonymous ftp to <A href="http://cdsarc.u-strasbg.fr">http://cdsarc.u-strasbg.fr</A> (<A href="http://130.79.128.5">http://130.79.128.5</A>) or via <A href="http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/591/A55">http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/591/A55</A> [less ▲]

Detailed reference viewed: 18 (1 ULg)
Full Text
Peer Reviewed
See detailOrbital, spin state and thermophysical characterization of near-Earth asteroid (3200) Phaethon
Hanus, Josef; Delbo, Marco; Vokrouhlický, D. et al

in Astronomy and Astrophysics (2016)

The near-Earth asteroid (3200) Phaethon is an intriguing object: its perihelion is only at 0.14 au and is associated with the Geminid meteor stream. We aim to use all available disk-integrated optical ... [more ▼]

The near-Earth asteroid (3200) Phaethon is an intriguing object: its perihelion is only at 0.14 au and is associated with the Geminid meteor stream. We aim to use all available disk-integrated optical data to derive reliable convex shape model of Phaethon. By interpreting the available space- and ground-based thermal infrared data and Spitzer spectra using a thermophysical model, we also aim to further constrain its size, thermal inertia, and visible geometric albedo. We apply the convex inversion method to the new optical data obtained by six instruments together with the already existing observations. The convex shape model is then used as an input for the thermophysical modeling. We also study the long-term stability of Phaethon’s orbit and spin axis by a numerical orbital and rotation-state integrator We present a new convex shape model and rotational state of Phaethon – sidereal rotation period of 3.603958(2) h and ecliptic coordinates of the preferred pole orientation of (319◦ , −39◦) with a 5◦ uncertainty. Moreover, we derive its size (D=5.1±0.2 km), thermal inertia (Γ=600±200 J m-2s -1/2K -1), geometric visible albedo (pV=0.122±0.008), and estimate the macroscopic surface roughness. We also find that the Sun illumination at the perihelion passage during past thousands of years is not connected to a specific area on the surface implying non-preferential heating. [less ▲]

Detailed reference viewed: 27 (6 ULg)
Full Text
Peer Reviewed
See detailThe X-ray light curve of the massive colliding wind Wolf-Rayet + O binary WR 21a
Gosset, Eric ULg; Nazé, Yaël ULg

in Astronomy and Astrophysics (2016), 590

Our dedicated XMM-Newton monitoring, as well as archival Chandra and Swift datasets, were used to examine the behaviour of the WN5h+O3V binary WR 21a at high energies. For most of the orbit, the X-ray ... [more ▼]

Our dedicated XMM-Newton monitoring, as well as archival Chandra and Swift datasets, were used to examine the behaviour of the WN5h+O3V binary WR 21a at high energies. For most of the orbit, the X-ray emission exhibits few variations. However, an increase in strength of the emission is seen before periastron, following a 1 /D relative trend, where D is the separation between both components. This increase is rapidly followed by a decline due to strong absorption as the Wolf-Rayet (WR) comes in front. The fitted local absorption value appears to be coherent with a mass-loss rate of about 1 × 10[SUP]-5[/SUP] M[SUB]⊙[/SUB] yr[SUP]-1[/SUP] for the WR component. However, absorption is not the only parameter affecting the X-ray emission at periastron as even the hard X-ray emission decreases, suggesting a possible collapse of the colliding wind region near to or onto the photosphere of the companion just before or at periastron. An eclipse may appear as another potential scenario, but it would be in apparent contradiction with several lines of evidence, notably the width of the dip in the X-ray light curve and the absence of variations in the UV light curve. Afterwards, the emission slowly recovers, with a strong hysteresis effect. The observed behaviour is compatible with predictions from general wind-wind collision models although the absorption increase is too shallow. Based on observations collected at ESO as well as with Swift, Chandra, and the ESA science mission XMM-Newton, an ESA Science Mission with instruments and contributions directly funded by ESA Member States and the USA (NASA). [less ▲]

Detailed reference viewed: 26 (3 ULg)
Full Text
Peer Reviewed
See detailPulsating hot O subdwarfs in ω Centauri: mapping a unique instability strip on the extreme horizontal branch
Randall, S. K.; Calamida, A.; Fontaine, G. et al

in Astronomy and Astrophysics (2016), 589

We present the results of an extensive survey for rapid pulsators among Extreme Horizontal Branch (EHB) stars in ω Cen. The observations performed consist of nearly 100 h of time-series photometry for ... [more ▼]

We present the results of an extensive survey for rapid pulsators among Extreme Horizontal Branch (EHB) stars in ω Cen. The observations performed consist of nearly 100 h of time-series photometry for several off-centre fields of the cluster, as well as low-resolution spectroscopy for a partially overlapping sample. We obtained photometry for some 300 EHB stars, for around half of which we are able to recover light curves of sufficient quality to either detect or place meaningful non-detection limits for rapid pulsations. Based on the spectroscopy, we derive reliable values of log g, T[SUB]eff[/SUB] and log N(He) /N(H) for 38 targets, as well as good estimates of the effective temperature for another nine targets, whose spectra are slightly polluted by a close neighbour in the image. The survey uncovered a total of five rapid variables with multi-periodic oscillations between 85 and 125 s. Spectroscopically, they form a homogeneous group of hydrogen-rich subdwarf O stars clustered between 48 000 and 54 000 K. For each of the variables we are able to measure between two and three significant pulsations believed to constitute independent harmonic oscillations. However, the interpretation of the Fourier spectra is not straightforward due to significant fine structure attributed to strong amplitude variations. In addition to the rapid variables, we found an EHB star with an apparently periodic luminosity variation of ~2700 s, which we tentatively suggest may be caused by ellipsoidal variations in a close binary. Using the overlapping photometry and spectroscopy sample we are able to map an empirical ω Cen instability strip in log g - T[SUB]eff[/SUB] space. This can be directly compared to the pulsation driving predicted from the Montréal "second-generation" models regularly used to interpret the pulsations in hot B subdwarfs. Extending the parameter range of these models to higher temperatures, we find that the region where p-mode excitation occurs is in fact bifurcated, and the well-known instability strip between 29 000-36 000 K where the rapid subdwarf B pulsators are found is complemented by a second one above 50 000 K in the models. While significant challenges remain at the quantitative level, we believe that the same κ-mechanism that drives the pulsations in hot B subdwarfs is also responsible for the excitation of the rapid oscillations observed in the ω Cen variables. Intriguingly, the ω Cen variables appear to form a unique class. No direct counterparts have so far been found either in the Galactic field, nor in other globular clusters, despite dedicated searches. Conversely, our survey revealed no ω Cen representatives of the rapidly pulsating hot B subdwarfs found among the field population, though their presence cannot be excluded from the limited sample. Based on observations collected at the European Organisation for Astronomical Research in the Southern Hemisphere, Chile (proposal IDs 083.D-0833, 386.D-0669, 087.D-0216 and 091.D-0791).The reduced spectra are only available at the CDS via anonymous ftp to <A href="http://cdsarc.u-strasbg.fr">http://cdsarc.u-strasbg.fr</A> (ftp://130.79.128.5) or via <A href="http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/589/A1">http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/589/A1</A> [less ▲]

Detailed reference viewed: 16 (2 ULg)
Full Text
Peer Reviewed
See detailThe Gaia-ESO Survey: Sodium and aluminium abundances in giants and dwarfs. Implications for stellar and Galactic chemical evolution
Smiljanic, R.; Romano, D.; Bragaglia, A. et al

in Astronomy and Astrophysics (2016), 589

Context. Stellar evolution models predict that internal mixing should cause some sodium overabundance at the surface of red giants more massive than ~1.5-2.0 M[SUB]⊙[/SUB]. The surface aluminium abundance ... [more ▼]

Context. Stellar evolution models predict that internal mixing should cause some sodium overabundance at the surface of red giants more massive than ~1.5-2.0 M[SUB]⊙[/SUB]. The surface aluminium abundance should not be affected. Nevertheless, observational results disagree about the presence and/or the degree of Na and Al overabundances. In addition, Galactic chemical evolution models adopting different stellar yields lead to very different predictions for the behavior of [Na/Fe] and [Al/Fe] versus [Fe/H]. Overall, the observed trends of these abundances with metallicity are not well reproduced. <BR /> Aims: We readdress both issues, using new Na and Al abundances determined within the Gaia-ESO Survey. Our aim is to obtain better observational constraints on the behavior of these elements using two samples: i) more than 600 dwarfs of the solar neighborhood and of open clusters and ii) low- and intermediate-mass clump giants in six open clusters. <BR /> Methods: Abundances were determined using high-resolution UVES spectra. The individual Na abundances were corrected for nonlocal thermodynamic equilibrium effects. For the Al abundances, the order of magnitude of the corrections was estimated for a few representative cases. For giants, the abundance trends with stellar mass are compared to stellar evolution models. For dwarfs, the abundance trends with metallicity and age are compared to detailed chemical evolution models. <BR /> Results: Abundances of Na in stars with mass below ~2.0 M[SUB]⊙[/SUB], and of Al in stars below ~3.0 M[SUB]⊙[/SUB], seem to be unaffected by internal mixing processes. For more massive stars, the Na overabundance increases with stellar mass. This trend agrees well with predictions of stellar evolutionary models. For Al, our only cluster with giants more massive than 3.0 M[SUB]⊙[/SUB], NGC 6705, is Al enriched. However, this might be related to the environment where the cluster was formed. Chemical evolution models that well fit the observed [Na/Fe] vs. [Fe/H] trend in solar neighborhood dwarfs cannot simultaneously explain the run of [Al/Fe] with [Fe/H], and vice versa. The comparison with stellar ages is hampered by severe uncertainties. Indeed, reliable age estimates are available for only a half of the stars of the sample. We conclude that Al is underproduced by the models, except for stellar ages younger than about 7 Gyr. In addition, some significant source of late Na production seems to be missing in the models. Either current Na and Al yields are affected by large uncertainties, and/or some important Galactic source(s) of these elements has as yet not been taken into account. Based on observations made with the ESO/VLT, at Paranal Observatory, under program 188.B-3002 (The Gaia-ESO Public Spectroscopic Survey), and on data obtained from the ESO Archive originally observed under programs 60.A-9143, 076.B-0263 and 082.D-0726.Table 1 is only available at the CDS via anonymous ftp to <A href="http://cdsarc.u-strasbg.fr">http://cdsarc.u-strasbg.fr</A> (ftp://130.79.128.5) or via <A href="http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/589/A115">http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/589/A115</A> [less ▲]

Detailed reference viewed: 11 (3 ULg)
Full Text
Peer Reviewed
See detailLow-rank plus sparse decomposition for exoplanet detection in direct-imaging ADI sequences. The LLSG algorithm
Gómez González, Carlos ULg; Absil, Olivier ULg; Absil, P.-A. et al

in Astronomy and Astrophysics (2016), 589

Context. Data processing constitutes a critical component of high-contrast exoplanet imaging. Its role is almost as important as the choice of a coronagraph or a wavefront control system, and it is ... [more ▼]

Context. Data processing constitutes a critical component of high-contrast exoplanet imaging. Its role is almost as important as the choice of a coronagraph or a wavefront control system, and it is intertwined with the chosen observing strategy. Among the data processing techniques for angular differential imaging (ADI), the most recent is the family of principal component analysis (PCA) based algorithms. It is a widely used statistical tool developed during the first half of the past century. PCA serves, in this case, as a subspace projection technique for constructing a reference point spread function (PSF) that can be subtracted from the science data for boosting the detectability of potential companions present in the data. Unfortunately, when building this reference PSF from the science data itself, PCA comes with certain limitations such as the sensitivity of the lower dimensional orthogonal subspace to non-Gaussian noise. <BR /> Aims: Inspired by recent advances in machine learning algorithms such as robust PCA, we aim to propose a localized subspace projection technique that surpasses current PCA-based post-processing algorithms in terms of the detectability of companions at near real-time speed, a quality that will be useful for future direct imaging surveys. <BR /> Methods: We used randomized low-rank approximation methods recently proposed in the machine learning literature, coupled with entry-wise thresholding to decompose an ADI image sequence locally into low-rank, sparse, and Gaussian noise components (LLSG). This local three-term decomposition separates the starlight and the associated speckle noise from the planetary signal, which mostly remains in the sparse term. We tested the performance of our new algorithm on a long ADI sequence obtained on β Pictoris with VLT/NACO. <BR /> Results: Compared to a standard PCA approach, LLSG decomposition reaches a higher signal-to-noise ratio and has an overall better performance in the receiver operating characteristic space. This three-term decomposition brings a detectability boost compared to the full-frame standard PCA approach, especially in the small inner working angle region where complex speckle noise prevents PCA from discerning true companions from noise. [less ▲]

Detailed reference viewed: 75 (25 ULg)