References of "Trends in Biochemical Sciences"
     in
Bookmark and Share    
Full Text
Peer Reviewed
See detailPhosphorylation of NF-kappa B and I kappa B proteins: implications in cancer and inflammation
Viatour, Patrick ULg; Merville, Marie-Paule ULg; Bours, Vincent ULg et al

in Trends in Biochemical Sciences (2005), 30(1), 43-52

Nuclear factor-kappaB (NF-kappaB) is a transcription factor that has crucial roles in inflammation, immunity, cell proliferation and apoptosis. Activation of NF-kappaB mainly occurs via IkappaB kinase ... [more ▼]

Nuclear factor-kappaB (NF-kappaB) is a transcription factor that has crucial roles in inflammation, immunity, cell proliferation and apoptosis. Activation of NF-kappaB mainly occurs via IkappaB kinase (IKK)-mediated phosphorylation of inhibitory molecules, including IkappaBalpha. Optimal induction of NF-kappaB target genes also requires phosphorylation of NF-kappaB proteins, such as p65, within their transactivation domain by a variety of kinases in response to distinct stimuli. Whether, and how, phosphorylation modulates the function of other NF-kappaB and IkappaB proteins, such as B-cell lymphoma 3, remains unclear. The identification and characterization of all the kinases known to phosphorylate NF-kappaB and IkappaB proteins are described here. Because deregulation of NF-kappaB and IkappaB phosphorylations is a hallmark of chronic inflammatory diseases and cancer, newly designed drugs targeting these constitutively activated signalling pathways represent promising therapeutic tools. [less ▲]

Detailed reference viewed: 38 (8 ULg)
Full Text
Peer Reviewed
See detailPeptides in membranes: tipping the balance of membrane stability.
Brasseur, Robert ULg; Pillot, T.; Lins, Laurence ULg et al

in Trends in biochemical sciences (1997), 22(5), 167-71

This review describes a class of peptides that associate with lipids in membranes and are commonly known as 'oblique-orientated peptides'. Owing to an asymmetric distribution of hydrophobic residues along ... [more ▼]

This review describes a class of peptides that associate with lipids in membranes and are commonly known as 'oblique-orientated peptides'. Owing to an asymmetric distribution of hydrophobic residues along the axis of the alpha-helix, such peptides can destabilize membranes or lipid cores, thereby facilitating such cellular processes as vesicular fusion or protein transport across subcellular compartments, as well as remodelling of lipid cores. [less ▲]

Detailed reference viewed: 13 (4 ULg)