References of "Proteins-Structure Function and Bioinformatics"
     in
Bookmark and Share    
Full Text
Peer Reviewed
See detailComputational Study Of Colipase Interaction With Lipid Droplets And Bile Salt Micelles
Kerfelec, Brigitte; Allouche, Maya; Colin, Damien et al

in Proteins-Structure Function and Bioinformatics (2008), 73(4), 828-38

Colipase is a key element in the lipase-catalyzed hydrolysis of dietary lipids. Although devoid of enzymatic activity, colipase promotes the pancreatic lipase activity in physiological intestinal ... [more ▼]

Colipase is a key element in the lipase-catalyzed hydrolysis of dietary lipids. Although devoid of enzymatic activity, colipase promotes the pancreatic lipase activity in physiological intestinal conditions by anchoring the enzyme at the surface of lipid droplets. Analysis of structures of NMR colipase models and simulations of their interactions with various lipid aggregates, lipid droplet, and bile salt micelle, were carried out to determine and to map the lipid binding sites on colipase. We show that the micelle and the oil droplet bind to the same side of colipase 3D structure, mainly the hydrophobic fingers. Moreover, it appears that, although colipase has a single direction of interaction with a lipid interface, it does not bind in a specific way but rather oscillates between different positions. Indeed, different NMR models of colipase insert different fragments of sequence in the interface, either simultaneously or independently. This supports the idea that colipase finger plasticity may be crucial to adapt the lipase activity to different lipid aggregates. [less ▲]

Detailed reference viewed: 12 (0 ULg)
Full Text
Peer Reviewed
See detailIn Silico tilted properties of the 67-78 fragment of alpha-synuclein are responsible for membrane destabilization and neurotoxicity
Crowet, Jean-Marc ULg; Lins, Laurence ULg; Dupiereux-Fettweis, Ingrid ULg et al

in Proteins-Structure Function and Bioinformatics (2007), 68(4), 936-947

Alpha-synuclein is a 140 residue protein associated with Parkinson's disease. Intraneural inclusions called Lewy bodies and Lewy neurites are mainly composed of alpha-synuclein aggregated into amyloid ... [more ▼]

Alpha-synuclein is a 140 residue protein associated with Parkinson's disease. Intraneural inclusions called Lewy bodies and Lewy neurites are mainly composed of alpha-synuclein aggregated into amyloid fibrils. Other amyloidogenic proteins, such as the beta amyloid peptide involved in Alzheimer's disease and the prion protein (PrP) associated with Creuztfeldt-Jakob's disease, are known to possess "tilted peptides". These peptides are short protein fragments that adopt an oblique orientation at a hydrophobic/hydrophilic interface, which enables destabilization of the membranes. In this paper, sequence analysis and molecular modelling predict that the 67-78 fragment of alpha-synuclein is a tilted peptide. Its destabilizing properties were tested experimentally. The alpha-synuclein 67-78 peptide is able to induce lipid mixing and leakage of unilamellar liposomes. The neuronal toxicity, studied using human neuroblastoma cells, demonstrated that the alpha-synuclein 67-78 peptide induces neurotoxicity. A mutant designed by molecular modelling to be amphipathic was shown to be significantly less fusogenic and toxic than the wild type. In conclusion, we have identified a tilted peptide in alpha-synuclein, which could be involved in the toxicity induced during amyloidogenesis of alpha-synuclein. [less ▲]

Detailed reference viewed: 52 (17 ULg)
Full Text
Peer Reviewed
See detailRole of lysine versus arginine in enzyme cold-adaptation: Modifying lysine to homo-arginine stabilizes the cold-adapted alpha-amylase from Pseudoalteramonas haloplanktis
Siddiqui, K. S.; Poljak, A.; Guilhaus, M. et al

in Proteins-Structure Function and Bioinformatics (2006), 64(2), 486-501

The cold-adapted alpha-amylase from Pseudoalteromonas haloplanktis (AHA) is a multidomain enzyme capable of reversible unfolding. Cold-adapted proteins, including AHA, have been predicted to be ... [more ▼]

The cold-adapted alpha-amylase from Pseudoalteromonas haloplanktis (AHA) is a multidomain enzyme capable of reversible unfolding. Cold-adapted proteins, including AHA, have been predicted to be structurally flexible and conformationally unstable as a consequence of a high lysine-to-arginine ratio. In order to examine the role of low arginine content in structural flexibility of AHA, the amino groups of lysine were guanidinated to form homoarginine (hR), and the structure-function-stability properties of the modified enzyme were analyzed by transverse urea gradient-gel electrophoresis. The extent of modification was monitored by MALDI-TOF-MS, and correlated to changes in activity and stability. Modifying lysine to hR produced a conformationally more stable and less active a-amylase. The k(cat) of the modified enzyme decreased with a concomitant increase in Delta H-# and decrease in K-m. To interpret the structural basis of the kinetic and thermodynamic properties, the hR residues were modeled in the AHA X-ray structure and compared to the X-ray structure of a thermostable homolog. The experimental properties of the modified AHA were consistent with K106hR forming an intra-Domain B salt bridge to stabilize the active site and decrease the cooperativity of unfolding. Homo-Arg modification also appeared to alter Ca2+ and Cl- binding in the active site. Our results indicate that replacing lysine with hR generates mesophilic-like characteristics in AHA, and provides support for the importance of lysine residues in promoting enzyme cold adaptation. These data were consistent with computational analyses that show that AHA possesses a compositional bias that favors decreased conformational stability and increased flexibility. [less ▲]

Detailed reference viewed: 13 (0 ULg)
Full Text
Peer Reviewed
See detailPrediction Of Peptide Structure: How Far Are We?
Thomas, Annick ULg; Deshayes, S.; Decaffmeyer, Marc ULg et al

in Proteins-Structure Function and Bioinformatics (2006), 65(4), 889-97

Rational design of peptides is a challenge, which would benefit from a better knowledge of the rules of sequence-structure-function relationships. Peptide structures can be approached by spectroscopy and ... [more ▼]

Rational design of peptides is a challenge, which would benefit from a better knowledge of the rules of sequence-structure-function relationships. Peptide structures can be approached by spectroscopy and NMR techniques but data from these approaches too frequently diverge. Structures can also be calculated in silico from primary sequence information using three algorithms: Pepstr, Robetta, and PepLook. The most recent algorithm, PepLook introduces indexes for evaluating structural polymorphism and stability. For peptides with converging experimental data, calculated structures from PepLook and, to a lesser extent from Pepstr, are close to NMR models. The PepLook index for polymorphism is low and the index for stability points out possible binding sites. For peptides with divergent experimental data, calculated and NMR structures can be similar or, can be different. These differences are apparently due to polymorphism and to different conditions of structure assays and calculations. The PepLook index for polymorphism maps the fragments encoding disorder. This should provide new means for the rational design of peptides. [less ▲]

Detailed reference viewed: 8 (2 ULg)
Full Text
Peer Reviewed
See detailCharacterization and tissue-specific expression of two lepidopteran farnesyl diphosphate synthase homologs: Implications for the biosynthesis of ethyl-substituted juvenile hormones
Cusson, M.; Beliveau, C.; Sen, Se. et al

in Proteins-Structure Function and Bioinformatics (2006), 65(3), 742758

The sesquiterpenoid juvenile hormone (JH) regulates insect development and reproduction. Most insects produce only one chemical form of JH, but the Lepidoptera produce four derivatives featuring ethyl ... [more ▼]

The sesquiterpenoid juvenile hormone (JH) regulates insect development and reproduction. Most insects produce only one chemical form of JH, but the Lepidoptera produce four derivatives featuring ethyl branches. The biogenesis of these JHs requires the synthesis of ethyl-substituted farnesyl diphosphate (FPP) by FPP synthase (FPPS). To determine if there exist more than one lepidopteran FPPS, and whether one FPPS homolog is better adapted for binding the builder ethyl-branched substrates/products, we cloned three lepidopteran FPPS cDNAs, two from Choristoneura fumiferana and one from Pseudaletia unipuncta. Amino acid sequence comparisons among these and other eukaryotic FPPSs led to the recognition of two lepidopteran FPPS types. Type-I FPPSs display unique active site substitutions, including several in and near the first aspartaterich motif, whereas type-II proteins have a more "conventional" catalytic cavity. In a yeast assay, a Drosophila FPPS clone provided full complementation of an FPPS mutation, but lepidopteran FPPS clones of either type yielded only partial complementation, suggesting unusual catalytic features and/or requirements of these enzymes. Although a structural analysis of lepidopteran FPPS active sites suggested that type-I enzymes are better suited than type-II for generating ethyl-substituted products, a quantitative real-time PCR assessment of their relative abundance in insect tissues indicated that type-I expression is ubiquitous whereas that of type-II is essentially confined to the JH-producing glands, where its transcripts are ∼20 times more abundant than those of type-I. These results suggest that type-II FPPS plays a leading role in lepidopteran JH biosynthesis in spite of its apparently more conventional catalytic cavity [less ▲]

Detailed reference viewed: 19 (3 ULg)
Full Text
Peer Reviewed
See detailProtein-Nucleic Acid Recognition: Statistical Analysis Of Atomic Interactions And Influence Of Dna Structure
Lejeune, D.; Delsaux, N.; Charloteaux, Benoît ULg et al

in Proteins-Structure Function and Bioinformatics (2005), 61(2), 258-71

We analyzed structural features of 11,038 direct atomic contacts (either electrostatic, H-bonds, hydrophobic, or other van der Waals interactions) extracted from 139 protein-DNA and 49 protein-RNA ... [more ▼]

We analyzed structural features of 11,038 direct atomic contacts (either electrostatic, H-bonds, hydrophobic, or other van der Waals interactions) extracted from 139 protein-DNA and 49 protein-RNA nonhomologous complexes from the Protein Data Bank (PDB). Globally, H-bonds are the most frequent interactions (approximately 50%), followed by van der Waals, hydrophobic, and electrostatic interactions. From the protein viewpoint, hydrophilic amino acids are over-represented in the interaction databases: Positively charged amino acids mainly contact nucleic acid phosphate groups but can also interact with base edges. From the nucleotide point of view, DNA and RNA behave differently: Most protein-DNA interactions involve phosphate atoms, while protein-RNA interactions involve more frequently base edge and ribose atoms. The increased participation of DNA phosphate involves H-bonds rather than salt bridges. A statistical analysis was performed to find the occurrence of amino acid-nucleotide pairs most different from chance. These pairs were analyzed individually. Finally, we studied the conformation of DNA in the interaction sites. Despite the prevalence of B-DNA in the database, our results suggest that A-DNA is favored in the interaction sites. [less ▲]

Detailed reference viewed: 12 (0 ULg)
Full Text
Peer Reviewed
See detailPartial Atomic Charges Of Amino Acids In Proteins
Thomas, Annick ULg; Milon, A.; Brasseur, Robert ULg

in Proteins-Structure Function and Bioinformatics (2004), 56(1), 102-9

Using a semiempirical quantum mechanical procedure (FCPAC) we have calculated the partial atomic charges of amino acids from 494 high-resolution protein structures. To analyze the influence of the protein ... [more ▼]

Using a semiempirical quantum mechanical procedure (FCPAC) we have calculated the partial atomic charges of amino acids from 494 high-resolution protein structures. To analyze the influence of the protein's environment, we considered each residue under two conditions: either as the center of a tripeptide with PDB structure geometry (free) or as the center of 13-16 amino acid clusters extracted from the PDB structure (buried). The partial atomic charges from residues in helices and in sheets were separated. The FCPAC partial atomic charges of the Cbeta and Calpha of most residues correlate with their helix propensity, positively for Cbeta and negatively for Calpha (r2 = 0.76 and 0.6, respectively). The main consequence of burying residues in proteins is the polarization of the backbone C=O bond, which is more pronounced in helices than in sheets. The average shift of the oxygen partial charges that results from burying is -0.120 in helix and -0.084 in sheet with the charge of the proton as unit. Linear correlations are found between the average NMR chemical shifts and the average FCPAC partial charges of Calpha (r2 = 0.8-0.85), N (r3 = 0.67-0.72), and Cbeta (r2 = 0.62) atoms. Correlations for helix and beta-sheet FCPAC partial charges show parallel regressions, suggesting that the charge variations due to burying in proteins differentiate between the dihedral angle effects and the polarization of backbone atoms. [less ▲]

Detailed reference viewed: 8 (0 ULg)
Full Text
Peer Reviewed
See detailImpala: A Simple Restraint Field To Simulate The Biological Membrane In Molecular Structure Studies
Ducarme, P.; Rahman, M.; Brasseur, Robert ULg

in Proteins-Structure Function and Bioinformatics (1998), 30(4), 357-71

The lipid bilayer is crucial for the folding of integral membrane proteins. This article presents an empirical method to account for water-lipid interfaces in the insertion of molecules interacting with ... [more ▼]

The lipid bilayer is crucial for the folding of integral membrane proteins. This article presents an empirical method to account for water-lipid interfaces in the insertion of molecules interacting with bilayers. The interactions between the molecule and the bilayer are described by restraint functions designed to mimic the membrane effect. These functions are calculated for each atom and are proportional to the accessible surface of the latter. The membrane is described as a continuous medium whose properties are varying along the axis perpendicular to the bilayer plane. The insertion is analyzed by a Monte Carlo procedure applied to the restraint functions. The method was successfully applied to small alpha peptides of known configurations. It provides insights of the behaviors of the peptide dynamics that cannot be obtained with statistical approaches (e.g., hydropathy analysis). [less ▲]

Detailed reference viewed: 15 (2 ULg)