References of "Protein Engineering, Design & Selection"
     in
Bookmark and Share    
Full Text
Peer Reviewed
See detailA non-natural variant of human lysozyme (I59T) mimics the in vitro behaviour of the I56T variant that is responsible for a form of familial amyloidosis.
Hagan, Christine L; Johnson, Russell J K; Dhulesia, Anne et al

in Protein Engineering, Design & Selection (2010), 23(7), 499-506

We report here the detailed characterisation of a non-naturally occurring variant of human lysozyme, I59T, which possesses a destabilising point mutation at the interface of the alpha- and beta-domains ... [more ▼]

We report here the detailed characterisation of a non-naturally occurring variant of human lysozyme, I59T, which possesses a destabilising point mutation at the interface of the alpha- and beta-domains. Although more stable in its native structure than the naturally occurring variants that give rise to a familial form of systemic amyloidosis, I59T possesses many attributes that are similar to these disease-associated species. In particular, under physiologically relevant conditions, I59T populates transiently an intermediate in which a region of the structure unfolds cooperatively; this loss of global cooperativity has been suggested to be a critical feature underlying the amyloidogenic nature of the disease-associated lysozyme variants. In the present study, we have utilised this variant to provide direct evidence for the generic nature of the conformational transition that precedes the ready formation of the fibrils responsible for lysozyme-associated amyloid disease. This non-natural variant can be expressed at higher levels than the natural amyloidogenic variants, enabling, for example, singly isotopically labelled protein to be generated much more easily for detailed structural studies by multidimensional NMR spectroscopy. Moreover, we demonstrate that the I59T variant can readily form fibrils in vitro, similar in nature to those of the amyloidogenic I56T variant, under significantly milder conditions than are needed for the wild-type protein. [less ▲]

Detailed reference viewed: 18 (3 ULg)
Full Text
Peer Reviewed
See detailDirected evolution on the cold adapted properties of TAB5 alkaline phosphatase
Koutsioulis, D.; Wang, E.; Tzanodaskalaki, M. et al

in Protein Engineering, Design & Selection (2008), 21(5), 319-27

Psychrophilic alkaline phosphatase (AP) from the Antarctic strain TAB5 was subjected to directed evolution in order to identify the key residues steering the enzyme's cold-adapted activity and stability ... [more ▼]

Psychrophilic alkaline phosphatase (AP) from the Antarctic strain TAB5 was subjected to directed evolution in order to identify the key residues steering the enzyme's cold-adapted activity and stability. A round of random mutagenesis and further recombination yielded three thermostable and six thermolabile variants of the TAB5 AP. All of the isolated variants were characterised by their residual activity after heat treatment, Michaelis-Menten kinetics, activation energy and microcalorimetric parameters of unfolding. In addition, they were modelled into the structure of the TAB5 AP. Mutations which affected the cold-adapted properties of the enzyme were all located close to the active site. The destabilised variants H135E and H135E/G149D had 2- and 3-fold higher kcat, respectively, than the wild-type enzyme. Wild-type AP has a complex heat-induced unfolding pattern while the mutated enzymes loose local unfolding transitions and have large shifts of the Tm values. Comparison of the wild-type and mutated TAB5 APs demonstrates that there is a delicate balance between the enzyme activity and stability and that it is possible to improve the activity and thermostability simultaneously as demonstrated in the case of the H135E/G149D variant compared to H135E. [less ▲]

Detailed reference viewed: 11 (1 ULg)