References of "Icarus: International Journal of Solar System Studies"
     in
Bookmark and Share    
Full Text
Peer Reviewed
See detailAtomic oxygen on the Venus nightside: Global distribution deduced from airglow mapping
Soret, Lauriane ULg; Gérard, Jean-Claude ULg; Montmessin, Franck et al

in Icarus: International Journal of Solar System Studies (2012), 217

The Visible and Infra-Red Thermal Imaging Spectrometer (VIRTIS) instrument on board the Venus Express spacecraft has measured the O2(a1[Delta]) nightglow distribution at 1.27 [mu]m in the Venus mesosphere ... [more ▼]

The Visible and Infra-Red Thermal Imaging Spectrometer (VIRTIS) instrument on board the Venus Express spacecraft has measured the O2(a1[Delta]) nightglow distribution at 1.27 [mu]m in the Venus mesosphere for more than two years. Nadir observations have been used to create a statistical map of the emission on Venus nightside. It appears that the statistical 1.6 MR maximum of the emission is located around the antisolar point. Limb observations provide information on the altitude and on the shape of the emission layer. We combine nadir observations essentially covering the southern hemisphere, corrected for the thermal emission of the lower atmosphere, with limb profiles of the northern hemisphere to generate a global map of the Venus nightside emission at 1.27 [mu]m. Given all the O2(a1[Delta]) intensity profiles, O2(a1[Delta]) and O density profiles have been calculated and three-dimensional maps of metastable molecular and atomic oxygen densities have been generated. This global O density nightside distribution improves that available from the VTS3 model, which was based on measurements made above 145 km. The O2(a1[Delta]) hemispheric average density is 2.1 × 109 cm-3, with a maximum value of 6.5 × 109 cm-3 at 99.2 km. The O density profiles have been derived from the nightglow data using CO2 profiles from the empirical VTS3 model or from SPICAV stellar occultations. The O hemispheric average density is 1.9 × 1011 cm-3 in both cases, with a mean altitude of the peak located at 106.1 km and 103.4 km, respectively. These results tend to confirm the modeled values of 2.8 × 1011 cm-3 at 104 km and 2.0 × 1011 cm-3 at 110 km obtained by Brecht et al. [Brecht, A., Bougher, S.W., Gérard, J.-C., Parkinson, C.D., Rafkin, S., Foster, B., 2011a. J. Geophys. Res., in press] and Krasnopolsky [Krasnopolsky, V.A., 2010. Icarus 207, 17-27], respectively. Comparing the oxygen density map derived from the O2(a1[Delta]) nightglow observations, it appears that the morphology is very different and that the densities obtained in this study are about three times higher than those predicted by the VTS3 model. [less ▲]

Detailed reference viewed: 30 (13 ULg)
Full Text
Peer Reviewed
See detailEUV spectroscopy of the Venus dayglow with UVIS on Cassini
Gérard, Jean-Claude ULg; Hubert, Benoît ULg; Gustin, Jacques ULg et al

in Icarus: International Journal of Solar System Studies (2011), 211

We analyze EUV spatially-resolved dayglow spectra obtained at 0.37 nm resolution by the UVIS instrument during the Cassini flyby of Venus on 24 June 1999, a period of high solar activity level. Emissions ... [more ▼]

We analyze EUV spatially-resolved dayglow spectra obtained at 0.37 nm resolution by the UVIS instrument during the Cassini flyby of Venus on 24 June 1999, a period of high solar activity level. Emissions from OI, OII, NI, CI and CII and CO have been identified and their disc average intensity has been determined. They are generally somewhat brighter than those determined from the observations made with the HUT spectrograph at a lower activity level, We present the brightness distribution along the foot track of the UVIS slit of the OII 83.4 nm, OI 98.9 nm, Lyman-ß + OI 102.5 nm and NI 120.0 nm multiplets, and the CO C-X and B-X Hopfield-Birge bands. We make a detailed comparison of the intensities of the 834 nm, 989 nm, 120.0 nm multiplets and CO B-X band measured along the slit foot track on the disc with those predicted by an airglow model previously used to analyze Venus and Mars ultraviolet spectra. This model includes the treatment of multiple scattering for the optically thick OI, OII and NI multiplets. It is found that the observed intensity of the OII emission at 83.4 nm is higher than predicted by the model. An increase of the O[SUP]+[/SUP] ion density relative to the densities usually measured by Pioneer Venus brings the observations and the modeled values into better agreement. The calculated intensity variation of the CO B-X emission along the track of the UVIS slit is in fair agreement with the observations. The intensity of the OI 98.9 nm emission is well predicted by the model if resonance scattering of solar radiation by O atoms is included as a source. The calculated brightness of the NI 120 nm multiplet is larger than observed by a factor of ˜2-3 if photons from all sources encounter multiple scattering. The discrepancy reduces to 30-80% if the photon electron impact and photodissociation of N[SUB]2[/SUB] sources of N([SUP]4[/SUP]S) atoms are considered as optically thin. Overall, we find that the O, N[SUB]2[/SUB] and CO densities from the empirical VTS3 model provide satisfactory agreement between the calculated and the observed EUV airglow emissions. [less ▲]

Detailed reference viewed: 22 (7 ULg)
Full Text
Peer Reviewed
See detailAtomic oxygen distributions in the Venus thermosphere: Comparisons between Venus Express observations and global model simulations
Brecht, A.; Bougher, S. W.; Gérard, Jean-Claude ULg et al

in Icarus: International Journal of Solar System Studies (2011)

Detailed reference viewed: 12 (1 ULg)
Full Text
Peer Reviewed
See detailA layer of ozone detected in the nightside upper atmosphere of Venus
Montmessin, Franck; Bertaux, J.-L.; Lefèvre, F. et al

in Icarus: International Journal of Solar System Studies (2011)

Detailed reference viewed: 7 (3 ULg)
Full Text
Peer Reviewed
See detailCharacteristics of Saturn’s FUV airglow from limb-viewing spectra obtained with Cassini-UVIS
Gustin, Jacques ULg; Stewart, Ian; Gérard, Jean-Claude ULg et al

in Icarus: International Journal of Solar System Studies (2010), 210

This study reports the analysis of far ultraviolet (FUV) limb spectra of the airglow of Saturn in the 1150–1850 Å spectral window, obtained with the Ultraviolet Imaging Spectrograph (UVIS) onboard Cassini ... [more ▼]

This study reports the analysis of far ultraviolet (FUV) limb spectra of the airglow of Saturn in the 1150–1850 Å spectral window, obtained with the Ultraviolet Imaging Spectrograph (UVIS) onboard Cassini, spanning altitudes from 1200 to 4000 km. The FUV limb emission consists of three main contributions: (1) H Ly-a peaking at 1100 km with a brightness of 0.8 kilo-Rayleighs (kR), (2) reflected sunlight longward of 1550 Å which maximizes at 950 km with 16.5 kR and (3) H2 bands in the 1150–1650 Å bandwidth, peaking at 1050 km reaching a maximum of 3.9 kR. A vertical profile of the local H2 volume emission rate has been derived using the hydrocarbon density profiles from a model of the Saturn equatorial atmosphere. It is well matched by a Chapman function, characterized by a maximum value of 3.5 photons cm-3 s-1 in the 800–1650 Å UV bandwidth, peaking at 1020 km. Comparisons between the observed spectra and a first-order synthetic airglow H2 model in the 1150–1650 Å bandwidth show that the spectral shape of the H2 bands is accounted for by solar fluorescence and photoelectron excitation. The best fits are obtained with a combination of H2 fluorescence lines and 20 eV electron impact spectra, the latter contributing 68% of the total H2 airglow emission. [less ▲]

Detailed reference viewed: 23 (4 ULg)
Full Text
Peer Reviewed
See detailNew constraints on the delivery of cometary water and nitrogen to Earth from the 15N/14N isotopic ratio
Hutsemekers, Damien ULg; Manfroid, Jean ULg; Jehin, Emmanuel ULg et al

in Icarus: International Journal of Solar System Studies (2009), 204

New independent constraints on the amount of water delivered to Earth by comets are derived using the [SUP]15[/SUP]N/[SUP]14[/SUP]N isotopic ratio, measured to be roughly twice as high in cometary CN and ... [more ▼]

New independent constraints on the amount of water delivered to Earth by comets are derived using the [SUP]15[/SUP]N/[SUP]14[/SUP]N isotopic ratio, measured to be roughly twice as high in cometary CN and HCN as in the present Earth. Under reasonable assumptions, we find that no more than a few percent of Earthâ s water can be attributed to comets, in agreement with the constraints derived from D/H. Our results also suggest that a significant part of Earthâ s atmospheric nitrogen might come from comets. Since the [SUP]15[/SUP]N/[SUP]14[/SUP]N isotopic ratio is not different in Oort-cloud and Kuiper-belt comets, our estimates apply to the contribution of both types of objects. [less ▲]

Detailed reference viewed: 16 (4 ULg)
Full Text
Peer Reviewed
See detailCharacteristics of Saturn's polar atmosphere and auroral electrons derived from HST/STIS, FUSE and Cassini/UVIS spectra
Gustin, Jacques ULg; Gérard, Jean-Claude ULg; Pryor, Wayne et al

in Icarus: International Journal of Solar System Studies (2009), 200

Ultraviolet (UV) spectra of Saturn's aurora obtained with the Hubble Space Telescope Imaging Spectrograph (STIS), the Cassini Ultraviolet Imaging Spectrograph (UVIS) and the Far Ultraviolet Spectroscopic ... [more ▼]

Ultraviolet (UV) spectra of Saturn's aurora obtained with the Hubble Space Telescope Imaging Spectrograph (STIS), the Cassini Ultraviolet Imaging Spectrograph (UVIS) and the Far Ultraviolet Spectroscopic Explorer (FUSE) have been analyzed. Comparisons between the observed spectra and synthetic models of electron-excited H[SUB]2[/SUB] have been used to determine various auroral characteristics. Far ultraviolet (FUV: 1200 1700 Å) STIS and UVIS spectra exhibit, below 1400 Å, weak absorption due to methane, with a vertical column ranging between 1.4×10[SUP][/SUP] and 1.2×10[SUP][/SUP]cm[SUP][/SUP]. Using the low-latitude Moses et al. [Moses, J.I., Bézard, B., Lellouch, E., Feuchtgruber, H., Gladstone, G.R., Allen, M., 2000. Icarus, 143, 244 298] atmospheric model of Saturn and an electron energy H[SUB]2[/SUB] column relationship, these methane columns are converted into the mean energy of the primary precipitating electrons, estimated to lie in the range 10 18 keV. This result is confirmed by the study of self-absorption with UVIS and FUSE extreme ultraviolet (EUV: 900 1200 Å) spectra. Below 1200 Å, it is seen that transitions connecting to the v[SUP][/SUP]<2 vibrational levels of the H[SUB]2[/SUB] electronic ground state are partially self-absorbed by H[SUB]2[/SUB] molecules overlying the auroral emission. Because of its low spectral resolution (Ë 5.5 Å), the UVIS EUV spectrum we analyzed does not allow us to unequivocally determine reasonable ranges of temperatures and H[SUB]2[/SUB] columns. On the other hand, the high spectral resolution (Ë 0.2 Å) of the FUSE LiF1a and LiF2a EUV spectra we examined resolve the H[SUB]2[/SUB] rotational lines and makes it possible to determine the H[SUB]2[/SUB] temperature. The modeled spectrum best fitting the FUSE LiF1a observation reveals a temperature of 500 K and self-absorption by a H[SUB]2[/SUB] vertical column of 3×10[SUP][/SUP]cm[SUP][/SUP]. When converted to energy of precipitating electrons, this H[SUB]2[/SUB] column corresponds to primary electrons of Ë 10 keV. The model that best fits the LiF2a spectrum is characterized by a temperature of 400 K and is not self-absorbed, making this segment ideal to determine the H[SUB]2[/SUB] temperature at the altitude of the auroral emission. The latter value is in agreement with temperatures obtained from H3+ infrared polar spectra. Self-absorption is detectable in the LiF2a segment for H[SUB]2[/SUB] columns exceeding 6×10[SUP][/SUP]cm[SUP][/SUP], which sets the maximum mean energy determined from the FUSE observations to Ë 15 keV. The total electron energy range of 10 18 keV deduced from FUV and EUV observations places the auroral emission peak between the 0.1 and 0.3 mubar pressure levels. These values should be seen as an upper limit, since most of the Voyager UVS spectra of Saturn's aurora examined by Sandel et al. [Sandel, B.R., Shemansky, D.E., Broadfoot, A.L., Holberg, J.B., Smith, G.R., 1982. Science 215, 548] do not exhibit methane absorption. The auroral H[SUB]2[/SUB] emission is thus likely located above but close to the methane homopause. The H[SUB]2[/SUB] auroral brightness in the 800 1700 Å bandwidth varies from 2.9 kR to 139 kR, comparable to values derived from FUV Faint Object Camera (FOC) and STIS images. [less ▲]

Detailed reference viewed: 54 (22 ULg)
Full Text
Peer Reviewed
See detailThe impact and rotational light curves of Comet 9P/Tempel 1
Manfroid, Jean ULg; Hutsemekers, Damien ULg; Jehin, Emmanuel ULg et al

in Icarus: International Journal of Solar System Studies (2007), 187

UVES and HIRES high-resolution spectra of Comet 9P/Tempel 1 are used to investigate the impact and rotational light curves of various species with a view toward building a simple model of the distribution ... [more ▼]

UVES and HIRES high-resolution spectra of Comet 9P/Tempel 1 are used to investigate the impact and rotational light curves of various species with a view toward building a simple model of the distribution and activity of the sources. The emission by OH, NH, CN, C[SUB]3[/SUB], CH, C[SUB]2[/SUB], NH[SUB]2[/SUB], and OI, are analyzed, as well as the light scattered by the dust. It is found that a simple model reproduces fairly well the impact light curves of all species combining the production of the observed molecules and the expansion of the material throughout the slit. The impact light curves are consistent with velocities of 400 600 m/s. Their modeling requires a three-step dissociation sequence ``Grand-Parent --> Parent --> Daughter'' to produce the observed molecules. The rotational light curve for each species is explained in terms of a single model with three sources. The dust component can however not easily be explained that way. [less ▲]

Detailed reference viewed: 5 (2 ULg)
Full Text
Peer Reviewed
See detailNuclear spin temperature of ammonia in Comet 9P/Tempel 1 before and after the Deep Impact event
Kawakita, Hideyo; Jehin, Emmanuel ULg; Manfroid, Jean ULg et al

in Icarus: International Journal of Solar System Studies (2007), 191

The Deep Impact mission succeeded in excavating inner materials from the nucleus of Comet 9P/Tempel 1 on 2005 July 04 (at 05:52 UT). Comet 9P/Tempel 1 is one of Jupiter family short period comets, which ... [more ▼]

The Deep Impact mission succeeded in excavating inner materials from the nucleus of Comet 9P/Tempel 1 on 2005 July 04 (at 05:52 UT). Comet 9P/Tempel 1 is one of Jupiter family short period comets, which might originate in the Kuiper belt region in the solar nebula. In order to characterize the comet and to support the mission from the ground-based observatory, optical high-dispersion spectroscopic observations were carried out with the echelle spectrograph (UVES) mounted on the 8-m telescope VLT (UT2) before and after the Deep Impact event. Ortho-to-para abundance ratios (OPRs) of cometary ammonia were determined from the NH[SUB]2[/SUB] emission spectra. The OPRs of ammonia on July 3.996 UT and 4.997 UT were derived to be 1.28±0.07 (nuclear spin temperature: T[SUB][/SUB]=24±2 K) and 1.26±0.08 (T[SUB][/SUB]=25±2 K), respectively. There is no significant change between before and after the impact. Actually, most materials ejected from the impact site could have moved away from the nucleus on July 4.997 UT, about 17 h after the impact. However, a small fraction of the ejected materials might remain in the slit of UVES instrument at that time because an excess of about 20% in the NH[SUB]2[/SUB] emission flux is observed above the normal activity level was found [Manfroid, J., Hutsemékers, D., Jehin, E., Cochran, A.L., Arpigny, C., Jackson, W.M., Meech, K.J., Schulz, R., Zucconi, J.-M., 2007. Icarus. This issue]. If the excess of NH[SUB]2[/SUB] on July 04.997 UT was produced from icy materials excavated by the Deep Impact, then an upper-limit of the ammonia OPR would be 1.75 (T[SUB][/SUB]>17 K) for those materials. On the other hand, the OPR of ammonia produced from the quiescent sources was similar to that of the Oort cloud comets observed so far. This fact may imply that physical conditions where cometary ices formed were similar between Comet 9P/Tempel 1 and the Oort cloud comets. [less ▲]

Detailed reference viewed: 30 (14 ULg)
Full Text
Peer Reviewed
See detailThe impact and rotational light curves of Comet 9P/Tempel 1
Manfroid, Jean ULg; Hutsemekers, Damien ULg; Jehin, Emmanuel ULg et al

in Icarus: International Journal of Solar System Studies (2007), 191

UVES and HIRES high-resolution spectra of Comet 9P/Tempel 1 are used to investigate the impact and rotational light curves of various species with a view toward building a simple model of the distribution ... [more ▼]

UVES and HIRES high-resolution spectra of Comet 9P/Tempel 1 are used to investigate the impact and rotational light curves of various species with a view toward building a simple model of the distribution and activity of the sources. The emission by OH, NH, CN, C[SUB]3[/SUB], CH, C[SUB]2[/SUB], NH[SUB]2[/SUB], and OI, are analyzed, as well as the light scattered by the dust. It is found that a simple model reproduces fairly well the impact light curves of all species combining the production of the observed molecules and the expansion of the material throughout the slit. The impact light curves are consistent with velocities of 400 600 m/s. Their modeling requires a three-step dissociation sequence ``Grand-Parent --> Parent --> Daughter'' to produce the observed molecules. The rotational light curve for each species is explained in terms of a single model with three sources. The dust component can however not easily be explained that way. [less ▲]

Detailed reference viewed: 8 (3 ULg)
Full Text
Peer Reviewed
See detailEstimated energy balance in the jovian upper atmosphere during an auroral heating event
Melin, Henrik; Miller, Steve; Stallard, Tom et al

in Icarus: International Journal of Solar System Studies (2006), 181(1), 256-265

We present an analysis of a series of observations of the auroral/polar regions of Jupiter, carried out between September 8 and 11, 1998, making use of the high-resolution spectrometer, CSHELL, on the ... [more ▼]

We present an analysis of a series of observations of the auroral/polar regions of Jupiter, carried out between September 8 and 11, 1998, making use of the high-resolution spectrometer, CSHELL, on the NASA InfraRed Telescope Facility (IRTF), Mauna Kea, Hawaii; these observations spanned an "auroral heating event." This analysis combines the measured line intensities and ion velocities with a one-dimensional model vertical profile of the jovian thermosphere/ionosphere. We compute the model line intensities both assuming local thermodynamic equilibrium (LTE) and, relaxing this condition (non-LTE), through detailed balance calculations, in order to compare with the observations. Taking the model parameters derived, we calculate the changes in heating rate required to account for the modelled temperature profiles that are consistent with the measured line intensities. We compute the electron precipitation rates required to give the modelled ion densities that are consistent with the measured line intensities, and derive the corresponding Pedersen conductivities. We compute the changes in heating due to Joule heating and ion drag derived from the measured ion velocities, and modelled conductivities, making use of ion-neutral coupling coefficients derived from a 3-D global circulation model. Finally, we compute the cooling due to the downward conduction of heat and the radiation-to-space from the H-3(+) molecular ion and hydrocarbons. Comparison of the various heating and cooling terms enables us to investigate the balance of energy inputs into the auroral/polar atmosphere. Increases in Joule heating and ion drag are sufficient to explain the observed heating of the atmosphere; increased particle precipitation makes only a minor heating contribution. But local cooling effects-predominantly radiation-to-space-are shown to be too inefficient to allow the atmosphere to relax back to pre-event thermal conditions. Thus we conclude that this event provides observational, i.e. empirical, evidence that heat must be transported away from the auroral/polar regions by thermally or mechanically driven winds. (c) 2005 Elsevier Inc. All rights reserved. [less ▲]

Detailed reference viewed: 24 (6 ULg)
Full Text
Peer Reviewed
See detailCassini UVIS observations of Jupiter's auroral variability
Pryor, Wayne R.; Stewart, A. Ian F.; Esposito, Larry W. et al

in Icarus: International Journal of Solar System Studies (2005), 178(2), 312-326

The Cassini spacecraft Ultraviolet Imaging Spectrograph (UVIS) obtained observations of Jupiter's auroral emissions in H-2 band systems and H Lyman-alpha from day 275 of 2000 (October 1), to day 81 of ... [more ▼]

The Cassini spacecraft Ultraviolet Imaging Spectrograph (UVIS) obtained observations of Jupiter's auroral emissions in H-2 band systems and H Lyman-alpha from day 275 of 2000 (October 1), to day 81 of 2001 (March 22). Much of the globally integrated auroral variability measured with UVIS can be explained simply in terms of the rotation of Jupiter's main auroral arcs with the planet. These arcs were also imaged by the Space Telescope Imaging Spectrograph (STIS) on Hubble Space Telescope (HST). However, several brightening events were seen by UVIS in which the global auroral output increased by a factor of 2-4. These events persisted over a number of hours and in one case can clearly be tied to a large solar coronal mass ejection event. The auroral UV emissions from these bursts also correspond to hectometric radio emission (0.5-16 MHz) increases reported by the Galileo Plasma Wave Spectrometer (PWS) and Cassim Radio and Plasma Wave Spectrometer (RPWS) experiments. In general, the hectometric radio data vary differently with longitude than the UV data because of radio wave beaming effects. The 2 largest events in the UVIS data were on 2000 day 280 (October 6) and on 2000 days 325-326 (November 20-21). The global brightening events on November 20-21 are compared with corresponding data on the interplanetary magnetic field, solar wind conditions, and energetic particle environment. ACE (Advanced Composition Explorer) solar wind data was numerically propagated from the Earth to Jupiter with an MHD code and compared to the observed event. A second class of brief auroral brightening events seen in HST (and probably UVIS) data that last for similar to 2 min is associated with aurora] flares inside the main auroral ovals. On January 8, 2001, from 18:45-19:35 UT UVIS H-2 band emissions from the north polar region varied quasiperiodically. The varying emissions, probably due to amoral flares inside the main auroral oval, are correlated with low-frequency quasiperiodic radio bursts in the 0.6-5 kHz Galileo PWS data. (c) 2005 Elsevier Inc. All rights reserved. [less ▲]

Detailed reference viewed: 41 (12 ULg)
Full Text
Peer Reviewed
See detailNon-LTE effects on H-3(+) emission in the jovian upper atmosphere
Melin, Henrik; Miller, Steve; Stallard, Tom et al

in Icarus: International Journal of Solar System Studies (2005), 178(1), 97-103

Calculations of column intensities are performed for a number of infrared transitions of the H-3(+) molecular ion, using a model atmosphere recently produced by Grodent et al. [2001. A self-consistent ... [more ▼]

Calculations of column intensities are performed for a number of infrared transitions of the H-3(+) molecular ion, using a model atmosphere recently produced by Grodent et al. [2001. A self-consistent model of the jovian auroral thermal structure. J. Geophys. Res. 106, 12933-12952]. The line intensities integrated along the line of sight through the model atmosphere are first computed assuming that all of the emitting energy levels are in local thermodynamic equilibrium (LTE). These results are compared with those derived from a detailed balance calculation using a method recently proposed by Oka and Epp [2004. Non-thermal rotational distribution of H-3(+). Astrophys. J. In press]. It is shown that the population of excited vibrational levels starts to depart from that derived from LTE at attitudes higher than 500 km (above the jovian cloud tops). This effect has been noted previously by Kim et it. [1992. Densities and vibrational distribution of H-3(+) in the jovian auroral atmosphere. J. Geophys. Res. 97, 6093-6101]. By 2000 km, all of the excited vibrational levels are Populated at less than 10% of the expected LTE value. This has important implications for the jovian upper atmosphere. In particular, the H-3(+) cooling effect will be greatly reduced high in the atmosphere. Modelled LTE line emission is greater than that derived from non-LTE modelling. Comparison of the non-LTE modelling with recent spectral measurements of the jovian auroral/polar regions in the L- and K-infrared windows shows that the Grodent et al. [2001. A self-consistent model of the jovian auroral thermal structure. J. Geophys. Res. 106, 12933-12952] profile overestimates the measured line intensity by similar to 3. Allowing for this, the non-LTE modelling shows that the column densities derived from (quasi-)LTE treatment of the measured line intensities may underestimate the real H-3(+) abundance by a factor of between 6 and 200. This means that attempts to derive important ionospheric properties, such as conductivity and related energy inputs due to magnetosphere-ionosphere coupling, front observed spectra will need to take this into account, if they are not to be seriously in error. (c) 2005 Elsevier Inc. All rights reserved. [less ▲]

Detailed reference viewed: 20 (4 ULg)
Full Text
Peer Reviewed
See detailJovian auroral spectroscopy with FUSE: analysis of self-absorption and implications for electron precipitation
Gustin, Jacques ULg; Feldman, Paul D.; Gérard, Jean-Claude ULg et al

in Icarus: International Journal of Solar System Studies (2004), 171(2), 336-355

High-resolution (similar to 0.22 Angstrom) spectra of the north jovian aurora were obtained in the 905-1180 Angstrom window with the Far Ultraviolet Spectroscopic Explorer (FUSE) on October 28, 2000. The ... [more ▼]

High-resolution (similar to 0.22 Angstrom) spectra of the north jovian aurora were obtained in the 905-1180 Angstrom window with the Far Ultraviolet Spectroscopic Explorer (FUSE) on October 28, 2000. The FUSE instrument resolves the rotational structure of the H-2 spectra and the spectral range allows the study of self-absorption. Below 1100 Angstrom, transitions connecting to the upsilon" less than or equal to 2 levels of the H-2 ground state are partially or totally absorbed by the overlying H2 molecules. The FUSE spectra provide information on the overlying H2 column and on the vibrational distribution of H-2. Transitions from high-energy H-2 Rydberg states and treatment of self-absorption are considered in our synthetic spectral generator. We show comparisons between synthetic and observed spectra in the 920-970, 1030-1080, and 1090-1180 Angstrom spectral windows. In a first approach (single-layer model), the synthetic spectra are venerated in a thin emitting layer and the emerging photons are absorbed by a layer located above the source. It is found that the parameters of the single-layer model best fitting the three spectral windows are 850, 800, and 800 K respectively for the H-2 gas temperature and 1.3 x 10(18), 1.5 x 10(20), and 1.3 x 10(20) cm(-2) for the H-2 self-absorbing vertical column respectively. Comparison between the H-2 column and a 1-D atmospheric model indicates that the short-wavelength FUV auroral emission originates from just above the homopause. This is confirmed by the high H-2 rovibrational temperatures, close to those deduced from spectral analyses of H-3(+) auroral emission. In a second approach, the synthetic spectral generator is coupled with a vertically distributed 3 energy degradation model, where the only input is the energy distribution of incoming electrons (multi-layer model). The model that best fits globally the three FUSE spectra is a sum of Maxwellian functions, with characteristic energies ranging from 1 to 100 keV, giving rise to an emission peak located at 5 mubar, that is similar to 100 km below the methane homopause. This multi-layer model is also applied to a re-analysis of the Hopkins Ultraviolet Telescope (HUT) auroral spectrum and accounts for the H2 self-absorption as well as the methane absorption. It is found that no additional discrete soft electron precipitation is necessary to fit either the FUSE or the HUT observations. (C) 2004 Elsevier Inc. All rights reserved. [less ▲]

Detailed reference viewed: 28 (13 ULg)
Full Text
Peer Reviewed
See detailStudy of the vertical structure of Saturn's atmosphere using HST/WFPC2 images
Munoz, O.; Moreno, F.; Molina, A. et al

in Icarus: International Journal of Solar System Studies (2004), 169(2), 413-428

We have studied the vertical structure of hazes at six different latitudes (-60degrees, -50degrees, -30degrees, -10degrees, +30degrees, and +50degrees) on Saturn's atmosphere. For that purpose we have ... [more ▼]

We have studied the vertical structure of hazes at six different latitudes (-60degrees, -50degrees, -30degrees, -10degrees, +30degrees, and +50degrees) on Saturn's atmosphere. For that purpose we have compared the results of our forward radiative transfer model to limb-to-limb retlectivity scans at four different wavelengths (230, 275, 673.2, and 893 nm). The images were obtained with the Hubble Space Telescope Wide Field Planetary Camera 2 in September 1997, during fall on Saturn's northern hemisphere. The spatial distribution of particles appears to be very variable with latitude both in the stratosphere and troposphere. For the latitude range +50degrees to -50degrees, an atmospheric structure consisting of a stratospheric haze and a tropospheric haze interspersed by clear gas regions has been found adequate to explain the center to limb reflectivities at the different wavelengths. This atmospheric structure has been previously used by Ortiz et al. (1996, Icarus 119, 53-66) and Stam et al. (2001, Icarus 152, 407-422). In this work the top of the tropospheric haze is found to be higher at the southern latitudes than at northern latitudes. This hemispherical asymmetry seems to be related to seasonal effects. Different latitudes experience different amount of solar insolation that can affect the atmospheric structure as the season varies with time. The haze optical thickness is largest (about 30 at 673.2 nm) at latitudes +/-50 and -10 degrees, and smallest (about 18) at 30 degrees. The stratospheric haze is found to be optically thin at all studied latitudes from -50 to +50 degrees being maximum at -10degrees (r = 0.033). At -60degrees latitude, where the UV images show a strong darkening compared to other regions on the planet, the cloud structure is remarkably different when compared to the other latitudes. Here, aerosol and gas are found to be uniformly mixed down to the 400 mbar level. (C) 2004 Elsevier Inc. All rights reserved. [less ▲]

Detailed reference viewed: 26 (8 ULg)
Full Text
Peer Reviewed
See detailSpatially resolved far ultraviolet spectroscopy of the jovian aurora
Gustin, Jacques ULg; Grodent, Denis ULg; Gérard, Jean-Claude ULg et al

in Icarus: International Journal of Solar System Studies (2002), 157(1), 91-103

Spatially resolved spectra in four 50-Angstrom FUV spectral windows were obtained across the jovian aurora with the Space Telescope Imaging Spectrograph (STIS) on board the Hubble Space Telescope. Nearly ... [more ▼]

Spatially resolved spectra in four 50-Angstrom FUV spectral windows were obtained across the jovian aurora with the Space Telescope Imaging Spectrograph (STIS) on board the Hubble Space Telescope. Nearly simultaneous ultraviolet imaging makes it possible to correlate the intensity variations along the STIS slit with those observed in the images and to characterize the global auroral context prevailing at the time of the observations. Spectra at similar to1-Angstrom resolution taken in pairs included an unabsorbed window and a spectral region affected by hydrocarbon absorption. Both sets of spectra correspond to an aurora with a main oval brightness of about 130 kilorayleighs of H-2 emission. The far ultraviolet color ratios I(1550-1620 Angstrom)/I(1230-1300 Angstrom) are 2.3 and 5.9 for the noon and morning sectors of the main oval, respectively. We use an interactive model coupling the energy degradation of incoming energetic electrons, auroral temperature and composition, and synthetic H2 spectra to fit the intensity distribution of the H2 lines. It is found that the model best fitting globally the spectra has a soft energy component in addition to a 10 erg cm(-2) s(-1) flux of 80 keV electrons. It provides an effective H2 temperature of 540 K. The relative intensity of temperature-sensitive H-2 lines indicates differences between the auroral main oval and polar cap emissions. The amount of methane absorption across the polar region is shown to vary in a way consistent with temperature. For the second spectral pair, the polar cap shows a higher attenuation by CH4, indicating a harder precipitation along high-latitude magnetic field lines. (C) 2002 Elsevier Science (USA). [less ▲]

Detailed reference viewed: 21 (12 ULg)
Full Text
Peer Reviewed
See detailSpectroscopic evidence for high-altitude Aurora at Jupiter from Galileo Extreme Ultraviolet Spectrometer and Hopkins Ultraviolet Telescope observations
Ajello, Joseph M.; Shemansky, D. E.; Pryor, Wayne R. et al

in Icarus: International Journal of Solar System Studies (2001), 152(1), 151-171

The Galileo Extreme Ultraviolet Spectrometer (EUVS) and the Hopkins Ultraviolet Telescope (HUT) acquired UV spectra of Jupiter Aurora in the period from 1995 through 1997, The EUVS spectra spanned the ... [more ▼]

The Galileo Extreme Ultraviolet Spectrometer (EUVS) and the Hopkins Ultraviolet Telescope (HUT) acquired UV spectra of Jupiter Aurora in the period from 1995 through 1997, The EUVS spectra spanned the wavelength range 540-1280 Angstrom and the HUT spectra measured the extreme ultraviolet and far ultraviolet (EUV + FUV) wavelength range 830-1850 Angstrom. Both sets of spectra present evidence of high-altitude, optically thin H-2 band emissions from the exobase region, The analysis of the UV spectra with a two-stream electron transport model and a jovian model auroral atmosphere indicates that the primary electron flux is composed of both soft and hard electrons with characteristic energies in the soft electron energy range of 20-200 eV and the hard electron range of 5-100 keV, The soft electron flux causes enhanced EUV emission intensities below 1100 Angstrom. The soft electron flux may explain the high temperature of the upper atmosphere above the homopause as measured from Il: rovibrational temperatures in the IR. For the deep aurora, a high primary characteristic energy above 5 keV is known to be present. The Galileo Energetic Particle Detector (EPD) has measured the electron distribution functions for energies above 15 keV in the middle magnetosphere. The high-energy distribution functions can be modeled by a combination of Maxwellian and kappa distributions. However, the EUV (800-1200 Angstrom) portion of the HUT spectrum cannot be modeled with a single distribution of hard electrons as was possible in the past for the FUV (1200-1650 Angstrom) spectrum measured by itself, The combination of EUV and FUV spectral observations by HUT serves to identify the amount of soft electron flux relative to the hard primary flux required to produce the high-altitude aurora in the neighborhood of the exobase, (C) tool academic Press. [less ▲]

Detailed reference viewed: 22 (3 ULg)
Full Text
Peer Reviewed
See detailDiagnostics of the jovian aurora deduced from ultraviolet spectroscopy: Model and HST/GHRS observations
Dols, V.; Gérard, Jean-Claude ULg; Clarke, J. T. et al

in Icarus: International Journal of Solar System Studies (2000), 147(1), 251-266

A model coupling an electron energy degradation code with a detailed synthetic spectrum of the H-2 Lyman and Werner band system is used to calculate the emerging auroral ultraviolet spectra from Jupiter's ... [more ▼]

A model coupling an electron energy degradation code with a detailed synthetic spectrum of the H-2 Lyman and Werner band system is used to calculate the emerging auroral ultraviolet spectra from Jupiter's atmosphere excited by electrons with different initial energy distributions. The atmospheric model is adapted from the vertical P-T profile measured by the Galileo probe and midlatitude model hydrocarbon photochemistry. Each altitude layer, with its own gas temperature, contributes to the emergent ultraviolet spectrum and the absorbers are vertically distributed within the source region of the auroral emissions. Examples of the calculated spectra are shown to validate the synthetic spectrum and to illustrate the importance of the electron energy distribution and the vertical structure. The model is then applied to the analysis of seven HST/GHRS spectra of the 1200-1700 Angstrom region obtained with 5-Angstrom resolution at various locations in the north and south Jovian aurora. These spectra have different color ratios which characterize the energy of the precipitated electrons, although they do not have a high enough spectral resolution to permit a determination of the H-2 temperature. We find that the characteristic energy of the assumed initial Maxwellian distribution ranges between 17 and 40 keV. A clear signature of acetylene absorption is observed near 1520, 1480, and 1440 Angstrom where the C2H2 cross section shows strong absorption peaks. The acetylene column abundance overlying the emission peak varies from 0.02 to 0.2 of the methane column. A better fit is obtained for some spectra when ethane absorption is added. The C2H6 column abundance varies from 0 to 0.5 of the methane column. These changes relative to methane are presumably the result of perturbations by heat released by the fast electron thermalization and/or perturbations to the hydrocarbon chemistry resulting from the production of H atoms by the aurora, A spectrum of the Io flux tube footprint and its trailing tail shows an ultraviolet color and hydrocarbon absorption quite similar to some of the main oval spectra, This observation suggests that the electrons of the Io flux tube are energized to a few tens of keV, similar to the electron precipitated in the main ovals and polar caps. Echelle spectra between 1216 and 1220 Angstrom at 0.07 Angstrom resolution are also compared with the model fitting best the mid-resolution spectra. It is found that the effective H-2 rovibrational temperature associated with the echelle spectra are significantly higher than predicted by the mid-latitude model. A large vertical temperature gradient just above the methane homopause due to large heating by auroral precipitation is a plausible explanation for this difference. (C) 2000 Academic Press. [less ▲]

Detailed reference viewed: 22 (5 ULg)
Full Text
Peer Reviewed
See detailSimulation of the morphology of the Jovian UV north aurora observed with the Hubble Space Telescope
Grodent, Denis ULg; Gladstone, G. R.; Gérard, Jean-Claude ULg et al

in Icarus: International Journal of Solar System Studies (1997), 128(2), 306-321

A model simulating Earth views of UV auroral arcs and diffuse emissions in the Jovian north polar region is described. It assumes a Chapman profile of vertical brightness distribution and various ... [more ▼]

A model simulating Earth views of UV auroral arcs and diffuse emissions in the Jovian north polar region is described. It assumes a Chapman profile of vertical brightness distribution and various horizontal structures, Simple geometric cases are described to illustrate the dependence on the altitude, atmospheric scale height, and central meridian planetary longitude (CML) of an idealized amoral morphology seen from Earth orbit, The numerical simulation makes it possible to assess the importance of limb brightening and the contribution from high altitude auroral emission located behind the planetary limb. As an application of the simulation model, four images obtained with the Wide Field and Planetary Camera 2 (WFPC2) on board the Hubble Space Telescope are used to determine the characteristics of their auroral (discrete and diffuse) structures, The apparent brightness distribution along the arcs can only be reproduced if intrinsic longitudinal (or local time) variations are introduced, in addition to the path length effects of the viewing geometry, A composite average auroral distribution is built by mapping 10 WFPC2 images from the same dataset, It illustrates the dichotomy frequently observed between a narrow single structure are at System III longitudes larger than 180 degrees (or morning sector) and the multiple are and broad diffuse emission at longitudes less than 180 degrees (or afternoon sector), It is shown that the equatorial auroral emission boundary is located between the 6R(J) and the 30R(J) magnetic field line footprints of the Goddard Space Flight Center (GSFC) O-6 model. (C) 1997 Academic Press. [less ▲]

Detailed reference viewed: 15 (7 ULg)
Peer Reviewed
See detailSOURCES AND DISTRIBUTION OF ODD NITROGEN IN THE VENUS DAYTIME THERMOSPHERE
Gérard, Jean-Claude ULg; DENEYE, E. J.; LERHO, M.

in Icarus: International Journal of Solar System Studies (1988), 75(1), 171-184

Detailed reference viewed: 13 (3 ULg)