References of "Fungal Biology"
     in
Bookmark and Share    
Full Text
Peer Reviewed
See detailHistopathological effects of Aspergillus clavatus (Ascomycota: Trichocomaceae) on larvae of the southern house mosquito, Culex quinquefasciatus (Diptera: Culicidae)
Bawin, Thomas ULg; Seye, Fawrou; Boukraa, Slimane ULg et al

in Fungal Biology (2016), 120(4), 489-499

Aspergillus clavatus (Ascomycota: Trichocomaceae) was previously found to be an opportunistic pathogen of mosquitoes (Diptera: Culicidae). In the present study, the mechanism leading to its insecticidal ... [more ▼]

Aspergillus clavatus (Ascomycota: Trichocomaceae) was previously found to be an opportunistic pathogen of mosquitoes (Diptera: Culicidae). In the present study, the mechanism leading to its insecticidal activity was investigated regarding histological damages on Culex quinquefasciatus larvae exposed to A. clavatus spores. Multiple concentration assays using spore suspensions (0.5 x 10^8 to 2.5 x 10^8 spores/ml) revealed 17.0% to 74.3% corrected mortalities after 48 h exposure. Heat-deactivated spores induced a lower mortality compared to non-heated spores suggesting that insecticidal effects are actively exerted. Spore-treated and untreated larvae were prepared for light microscopy as well as for scanning and transmission electron microscopy. Spores failed to adhere to the external body surface (except the mouth parts) of these aquatic immature stages but progressively filled the digestive tract where their metabolism seemed to activate. In parallel, the internal tissues of the larvae, i.e. the midgut wall, the skeletal muscles, and the cuticle-secreting epidermis, were progressively destroyed between 8 and 24 h of exposure. These observations suggest that toxins secreted by active germinating spores of A. clavatus in the digestive tract altered the larval tissues, leading to their necrosis and causing larval death. Fungal proliferation and sporulation then occurred during a saprophytic phase. A. clavatus enzymes or toxins responsible for these pathogenic effects need to be identified in further studies before any use of this fungus in mosquito control. [less ▲]

Detailed reference viewed: 43 (14 ULg)
Full Text
Peer Reviewed
See detailProduction, purification and characterization of a novel cold-active superoxide dismutase from the Antarctic strain Aspergillus glaucus 363
Abrashev, R.; Feller, Georges ULg; Kostadinova, N. et al

in Fungal Biology (2016), 120

Detailed reference viewed: 15 (6 ULg)