References of "Astrobiology"
     in
Bookmark and Share    
Full Text
Peer Reviewed
See detailBiogeological Analysis of Desert Varnish Using Portable Raman Spectrometers
Malherbe, Cédric ULg; Ingley, Richard; Hutchinson, Ian et al

in Astrobiology (2015)

Desert varnishes are thin, dark mineral coatings found on some rocks in arid or semi-arid environments on Earth. Microorganisms may play an active role in their formation, which takes many hundreds of ... [more ▼]

Desert varnishes are thin, dark mineral coatings found on some rocks in arid or semi-arid environments on Earth. Microorganisms may play an active role in their formation, which takes many hundreds of years. Their mineral matrix may facilitate the preservation of organic matter and is therefore of great relevance to martian exploration. Miniaturized Raman spectrometers (which allow nondestructive analysis of the molecular composition of a specimen) will equip rovers in forthcoming planetary exploration missions. In that context, and for the first time, portable Raman spectrometers operating in the green visible (532 nm as currently baselined for flight) and in the near-infrared (785 nm) were used in this study to investigate the composition (and substrate) of several samples of desert varnish. Rock samples that were suspected (and later confirmed) to be coated with desert varnish were recovered from two sites in the Mojave Desert, USA. The portable spectrometers were operated in flight-representative acquisition modes to identify the key molecular components of the varnish. The results demonstrate that the coatings typically comprise silicate minerals such as quartz, plagioclase feldspars, clays, ferric oxides, and hydroxides and that successful characterization of the samples can be achieved by using flightlike portable spectrometers for both the 532 and 785 nm excitation sources. In the context of searching for spectral signatures and identifying molecules that indicate the presence of extant and/or extinct life, we also report the detection of β-carotene in some of the samples. Analysis complications caused by the presence of rare earth element photoluminescence (which overlaps with and overwhelms the organic Raman signal when a 785 nm laser is employed) are also discussed. Key Words: Desert varnish-Raman spectroscopy-ExoMars-Portable spectrometers-Planetary science. [less ▲]

Detailed reference viewed: 69 (0 ULg)
Full Text
Peer Reviewed
See detailThe Search for Worlds Like Our Own
Fridlund, Malcolm; Eiroa, Carlos; Henning, Thomas et al

in Astrobiology (2010), 10(1), 5-17

The direct detection of Earth-like exoplanets orbiting nearby stars and the characterization of such planets -- particularly, their evolution, their atmospheres, and their ability to host life ... [more ▼]

The direct detection of Earth-like exoplanets orbiting nearby stars and the characterization of such planets -- particularly, their evolution, their atmospheres, and their ability to host life -- constitute a significant problem. The quest for other worlds as abodes of life has been one of mankind's great questions for several millennia. For instance, as stated by Epicurus 300 BC: Other worlds, with plants and other living things, some of them similar and some of them different from ours, must exist. Demokritos from Abdera (460-370 BC), the man who invented the concept of indivisible small parts - atoms - also held the belief that other worlds exist around the stars and that some of these worlds may be inhabited by life-forms. The idea of the plurality of worlds and of life on them has since been held by scientists like Johannes Kepler and William Herschel, among many others. Here, one must also mention Giordano Bruno. Born in 1548, Bruno studied in France and came into contact with the teachings of Nicolas Copernicus. He wrote the book De l'Infinito, Universo e Mondi in 1584, in which he claimed that the Universe was infinite, that it contained an infinite amount of worlds like Earth, and that these worlds were inhabited by intelligent beings. At the time, this was extremely controversial, and eventually Bruno was arrested by the church and burned at the stake in Rome in 1600, as a heretic, for promoting this and other equally confrontational issues (though it is unclear exactly which idea was the one that ultimately brought him to his end). In all the aforementioned cases, the opinions and results were arrived at through reasoning--not by experiment. We have only recently acquired the technological capability to observe planets orbiting stars other than 6our Sun; acquisition of this capability has been a remarkable feat of our time. We show in this introduction to the Habitability Primer that mankind is at the dawning of an age when, by way of the scientific method and 21st-century technology, we will be able to answer this fascinating controversial issue that has persisted for at least 2500 years. [less ▲]

Detailed reference viewed: 26 (7 ULg)
Full Text
Peer Reviewed
See detailDarwin-A Mission to Detect and Search for Life on Extrasolar Planets
Cockell, C. S.; Léger, A.; Fridlund, M. et al

in Astrobiology (2009), 9(1)

The discovery of extrasolar planets is one of the greatest achievements of modern astronomy. The detection of planets that vary widely in mass demonstrates that extrasolar planets of low mass exist. In ... [more ▼]

The discovery of extrasolar planets is one of the greatest achievements of modern astronomy. The detection of planets that vary widely in mass demonstrates that extrasolar planets of low mass exist. In this paper, we describe a mission, called Darwin, whose primary goal is the search for, and characterization of, terrestrial extrasolar planets and the search for life. Accomplishing the mission objectives will require collaborative science across disciplines, including astrophysics, planetary sciences, chemistry, and microbiology. Darwin is designed to detect rocky planets similar to Earth and perform spectroscopic analysis at mid-infrared wavelengths (6-20 mum), where an advantageous contrast ratio between star and planet occurs. The baseline mission is projected to last 5 years and consists of approximately 200 individual target stars. Among these, 25-50 planetary systems can be studied spectroscopically, which will include the search for gases such as CO[SUB]2[/SUB], H[SUB]2[/SUB]O, CH[SUB]4[/SUB], and O[SUB]3[/SUB]. Many of the key technologies required for the construction of Darwin have already been demonstrated, and the remainder are estimated to be mature in the near future. Darwin is a mission that will ignite intense interest in both the research community and the wider public. [less ▲]

Detailed reference viewed: 187 (18 ULg)
Full Text
Peer Reviewed
See detailThe astrobiology primer: An outline of general knowledge - Version 1, 2006
Mix, Lucas J; Armstrong, John C; Mandell, Avi M et al

in Astrobiology (2006), 6(5), 735-813

Detailed reference viewed: 25 (2 ULg)