References of "Thonart, Philippe"
     in
Bookmark and Share    
Full Text
Peer Reviewed
See detailImpact of different plant secondary metabolites addition: saponin, tannic acid, salicin and aloin on glucose anaerobic co-digestion
Mambanzulua Ngoma, Philippe; Hiligsmann, Serge ULg; Sumbu Zola, Eric et al

in Fermentation Technology (2015), 4(1), 1-11

Vegetal waste and some wastewater of agro-food industries contain plant secondary metabolites (PSMs). It was showed in nutritional researches that these substances such as saponins and tannins reduced the ... [more ▼]

Vegetal waste and some wastewater of agro-food industries contain plant secondary metabolites (PSMs). It was showed in nutritional researches that these substances such as saponins and tannins reduced the methane production in the rumen. To our knowledge no study was done in the waste treatment domain to evaluate the inhibitory effect of the principal glycosidic metabolites from the wastewater or vegetal waste on their own methane-producing anaerobic digestion. Therefore in this paper BMP tests were carried out at 30°C with four commercial PSMs (CPSMs) in mixture with glucose monohydrate (Gl) used as control sample. These CPSMs were saponin from Quilaja Saponaria Molina Pract (Sap), tannic acid (Tan), salicin (Sal) and aloin from Curacao Aloe (Alo) representing respectively saponins, tannins, alcoholic glycosides and anthraquinones sources. Acidogenesis and acetogenesis were recorded for all the mixtures of Gl and CPSMs; however their conversion rates decreased with the increase of the concentrations of CPSMs. By contrast, the methanogenesis was inhibited at concentrations of CPSMs above 0.3 g/l. The inhibition degree for aromatic compounds on the anaerobic biodegradation of Gl seemed directly to depend on the numbers of benzene rings in the medium and the synergism. Thus, the highest inhibition of the biogas production from Gl was recorded for Alo, followed by Sap, Tan and Sal. However, the highest inhibition of the methane production from Gl was recorded with Sap, Alo, Tan and Sal. It was supposed that the toxicity potentials of these PSMs on the own biomethanization would be in following decreasing order: Sap or Alo, Tan and Sal. Therefore, the concentration of PSMs alone or in mixture in a digester should be bellow 0.3 g/l. for a better methanization . [less ▲]

Detailed reference viewed: 44 (7 ULg)
Full Text
Peer Reviewed
See detailEffect of iron nanoparticles synthesized by a sol-gel process on Rhodococcus erythropolis T902.1 for biphenyl degradation
Wannoussa, Wissal ULg; Masy, Thibaut ULg; Lambert, Stéphanie ULg et al

in Journal of Water Resource and Protection (2015), 7

Nanoparticles (NPS) are considered as a new generation of compounds to improve environmental remediation and biological processes. The aim of this study is to investigate the effect of iron NPS ... [more ▼]

Nanoparticles (NPS) are considered as a new generation of compounds to improve environmental remediation and biological processes. The aim of this study is to investigate the effect of iron NPS encapsulated in porous silica (SiO2) on the biphenyl biodegradation by Rhodococcus erythropolis T902.1 (RT902.1). The iron NPS (major iron oxide FexOy form) were dispersed in the porosity of a SiO2 support synthesized by sol-gel process. These Fe/SiO2 NPS offer a stimulating effect on the biodegradation rate of biphenyl, an organic pollutant that is very stable and water-insoluble. This positive impact of NPS on the microbial biodegradation was found to be dependent on the NPS concentration ranging from 10−6 M to 10−4 M. After 18 days of incubation the cultures containing NPS at a concentration of 10−4 M of iron improved RT902.1 growth and degraded 35% more biphenyl than those without NPS (positive control) or with the sole SiO2 particles. Though the microorganism could not interact directly with the insoluble iron NPS, the results show that about 10% and 35% of the initial 10−4 M iron NPS encapsulated in the SiO2 matrix would be incorporated inside or adsorbed on the cell surface respectively and 35% would be released in the supernatant. These results suggest that RT902.1 would produce siderophore-like molecules to attract iron from the porous silica matrix. [less ▲]

Detailed reference viewed: 171 (95 ULg)
Full Text
Peer Reviewed
See detailBacteria may enhance species association in an ant-aphid mutualistic relationship
Fischer, Christophe ULg; Lognay, Georges ULg; Detrain, Claire et al

in Chemoecology (2015)

The mutualistic relationships between certain ant and aphid species are well known, the primary benefits being protection for the aphids and carbohydrate-rich honeydew for the ants. Questions remain ... [more ▼]

The mutualistic relationships between certain ant and aphid species are well known, the primary benefits being protection for the aphids and carbohydrate-rich honeydew for the ants. Questions remain, however, as to the exact semiochemical factors that establish and maintain such relationships. In this study we used a series of treatments and associated controls placed at the end of a two-way olfactometer to determine the degree of attractiveness of a complete plant-aphid-honeydew system as well as individual components of that system. Both the olfactometer branch selected by the black garden ant (Lasius niger), and the linear speed with which ants moved through the device, were measured. Study results showed that ants were attracted not just to the complete plant system and the honeydew itself, but also to the microbial flora in the absence of plant or honeydew, and specifically to a bacterium from the black bean aphid (Aphis fabae) honeydew, Staphylococcus xylosus. This bacterium produces a blend of semiochemicals that attract the ant scouts. This information suggests the presence of a naturally-occurring, reliable biotic cue for detection of potential aphid partners. This would have to be confirmed in natural conditions by further field experiments. Rather than being opportunistic species that coincidentally colonize a sugar-rich environment, microorganisms living in aphid honeydew may be able to alter emissions of volatile organic compounds (VOCs), thus significantly mediating partner attraction. A bacterial involvement in this mutualistic relationship could alter the manner in which these and similar relationships are viewed and evaluated. Future studies into mutualism stability and function among macroscopic partners will likely need to transition from a two-partner perspective to a multiple-partner perspective, and consider the microbial component, with the potential for one or more taxa making significant contributions to the relationship [less ▲]

Detailed reference viewed: 31 (6 ULg)
Full Text
Peer Reviewed
See detailManufacturing of Kivuguto milk and stability in storage under refrigeration
Karenzi, Eugène; Fauconnier, Marie-Laure ULg; Destain, Jacqueline ULg et al

in European Scientific Journal (2015), 11(3), 1-16

The kivugutomilk was processed in a 20 liters bioreactor with three bacteria previously selected in kivuguto traditional milk. The work aimed to study the association of three bacteria previously selected ... [more ▼]

The kivugutomilk was processed in a 20 liters bioreactor with three bacteria previously selected in kivuguto traditional milk. The work aimed to study the association of three bacteria previously selected in traditional kivuguto in order to reproduce it in a controlled fermentation, and thereafter to understand its stability during storage under refrigeration. Postacidification, viability, proteolysis, flavor compounds as well as rheological characteristics were monitored for 36 days. The ph decreases from 4.54 to 4.45 and the titratable acidity grew from 73°d to 79°d. The final biomass after storage was 0.60 108 cfu.g-1 which is far higher than the recommended 106 cells.g-1before consumption. The proteolysis was at a range of 3.0 to 7.0 mg.l-1of lysine equivalent, which is too low so that it can’t produce bitter peptides. The evolution of flavor compounds in storage showed that no change found with 3-methylbutan-1-ol, acetic acid and furan-2(5h)-one, whilst pentan-1-ol and furanmethan-2-ol increased slightly upon 24 days’ storage. The complex viscosity decreased from 4 - 5.3 pas before storage to 2.9 - 4.0 pas corresponding respectively to the ratio g''/g' of about 0.3-0.4 with a very low variation. These data allowed the production and the good preservation of kivuguto milk at 4°c on 36 days. [less ▲]

Detailed reference viewed: 44 (8 ULg)
Full Text
Peer Reviewed
See detailComparative study of the methane production based on the chemical composition of Mangifera Indica and Manihot Utilissima leaves
Mambanzulua Ngoma, Philippe; Hiligsmann, Serge ULg; Sumbu Zola, Eric et al

in SpringerPlus (2015), 4(75), 1-8

Leaves of Mangifera Indica (MI, mango leaves) and Manihot Utilissima (MU, cassava leaves) are available in tropical regions and are the most accessible vegetal wastes of Kinshasa, capital of Democratic ... [more ▼]

Leaves of Mangifera Indica (MI, mango leaves) and Manihot Utilissima (MU, cassava leaves) are available in tropical regions and are the most accessible vegetal wastes of Kinshasa, capital of Democratic Republic of Congo. These wastes are not suitably managed and are not rationally valorized. They are abandoned in full air, on the soil and in the rivers. They thus pollute environment. By contrast, they can be recuperated and treated in order to produce methane (energy source), organic fertilizer and clean up the environment simultaneously. The main objective of this study was to investigate methane production from MI and MU leaves by BMP tests at 30°C. The yields achieved from the anaerobic digestion of up to 61.3 g raw matter in 1 l medium were 0.001 l/g and 0.100 l CH4/g volatile solids of MI and MU leaves, respectively. The yield of MU leaves was in the range mentioned in the literature for other leaves because of a poor presence of bioactive substrates, and low C/N ratio. This methane yield corresponded to 7% of calorific power of wood. By contrast, the methane yield from MI leaves was almost nil suggesting some metabolism inhibition because of their rich composition in carbon and bioactive substrates. Whereas classical acidogenesis and acetogenesis were recorded. Therefore, methane production from the sole MI leaves seems unfavorable by comparison to MU leaves at the ambient temperature in tropical regions. Their solid and liquid residues obtained after anaerobic digestion would be efficient fertilizers. However, the methane productivity of both leaves could be improved by anaerobic co-digestion. [less ▲]

Detailed reference viewed: 55 (9 ULg)
Full Text
Peer Reviewed
See detailEVALUATION OF THERMOTOLERANT ACETOBACTER PASTEURIANUS STRAINS ISOLATED FROM MOROCCAN FRUITS CATALYZING OXIDATIVE FERMENTATION AT HIGH TEMPERATURE.
Mounir, Majid ULg; Shafiei, R.; Zarmehrkhorshid, R. et al

in Communications in Agricultural and Applied Biological Sciences (2015), 80(1), 37-43

Six strains of acetic acid bacteria were isolated from Moroccan local products and their potential as industrial strains was evaluated in lab-bioreactor. Three of them, namely TAV01, AF01 and CV01 ... [more ▼]

Six strains of acetic acid bacteria were isolated from Moroccan local products and their potential as industrial strains was evaluated in lab-bioreactor. Three of them, namely TAV01, AF01 and CV01, isolated from traditional apple vinegar, apple and cactus fruit, respectively were selected and their responses to high temperature were assessed. Morphological and biochemical identification confirmed that these strains belong to Acetobacter species. Their growth and acetic acid production were compared with the thermoresistant reference strain, Acetobacter senegalensis and mesophilic strains of Acetobacter pasteurianus. The two strains AF01 and CV01 showed abundant growth and noticeable acetic acid production ability at high temperatures (38 to 41 degrees C). A thermophilic character was observed for AF01 strain. Indeed, this bacterium grew better at 38 than 30 degrees C. [less ▲]

Detailed reference viewed: 19 (1 ULg)
Full Text
Peer Reviewed
See detailTechnological Features of Selected Kivuguto Strains during Milk Fermentation
Karenzi, Eugène; Fauconnier, Marie-Laure ULg; Destain, Jacqueline ULg et al

in Bioengineering and Bioscience (2015), 3(2), 13-22

Kivuguto milk is a traditional fermented milk of Rwanda. A previous study allowed for the selection of three bacteria involved in the fermentation process. The aim of the present work is the technological ... [more ▼]

Kivuguto milk is a traditional fermented milk of Rwanda. A previous study allowed for the selection of three bacteria involved in the fermentation process. The aim of the present work is the technological characterization of kivuguto strains for its production in the dairy industry. Acidification, proteolysis, the flavor compound profile, rheology and sensory analyses of fermented milks were assessed as important indicators of the starter culture formulation. Acidification showed that kivuguto milk ferments in 14 hours at 19°C with a titratable acidity of 73°D. The samples of CWBI-B1466 Lactococcus lactis and CWBI-B1470 Leuconostoc pseudomesenteroides had fermentation times of 14 h and 20 h, respectively. All samples were viscoelastic fluids, and the most important flavor compounds found were two alcohols, one ester and two furan derivative compounds. Proteolysis revealed low values ranging to 3.04-5.45 mg.L-1, which is very interesting in terms of taste acceptability. The three strains showed positive technological properties for kivuguto starter culture development and the data are fully in agreement with the preliminary results of the technological analyses. The findings revealed similarities between the formulated kivuguto and the traditional kivuguto as recognized by a tasting panel in a discrimination test. Ultimately, this study allowed for the formulation of kivuguto milk using three bacteria, prior to studying the stability of these properties during storage under refrigeration, which is the last stage before industrial production of kivuguto milk can begin. [less ▲]

Detailed reference viewed: 45 (16 ULg)
Full Text
Peer Reviewed
See detailEffect of metal ions and metal nanoparticles encapsulated in porous silica on biphenyl biodegradation by Rhodococcus erythropolis T902.1
Wannoussa, Wissal ULg; Hiligsmann, Serge ULg; Tasseroul, Ludivine ULg et al

in Journal of Sol-Gel Science and Technology (2015), 75

Biodegradation of biphenyl was carried out by Rhodococcus erythropolis T902.1 in presence ofnanometer-sized metallic (Co, Pd, Ag and Cu) nanoparticles (NPS) synthesized by the sol-gel process. In order to ... [more ▼]

Biodegradation of biphenyl was carried out by Rhodococcus erythropolis T902.1 in presence ofnanometer-sized metallic (Co, Pd, Ag and Cu) nanoparticles (NPS) synthesized by the sol-gel process. In order to <br />prevent their agglomeration, the metallic NPs (1-2 nm diameter) were anchored inside microporous silica crystallites and named Co/SiO2, Pd/SiO2, Ag/SiO2 and Cu/SiO2 samples respectively. They were added at low concentrations of 10-6 M, 10-5 M and 10-4 M of metal in the culture medium and their impact was compared with that of the simple metal ions added as cobalt, palladium, silver or copper salts. The cultures containing Pd/SiO2 or Co/SiO2 samples at 10-4 M of metal achieved a 50% higher biphenyl degradation yield after 18 days of incubation and improved Rhodococcus erythropolis T902.1 growth compared with those without (positive control) or with silica particles only. The highest biodegradation performance, i.e. 107 ±3 ppm/day, which was about 85% higher than in control conditions without NPs, was recorded in 250 ml baffled flasks stirred at 150 rpm with Co/SiO2 sample at 10-4 M Co. Furthermore, the stimulating effect of NPs on biphenyl biodegradation seems to also depend on the thermal treatment conditions applied to NPs since the experimental results indicated that, after calcination, the cobalt oxide NPs at a concentration of 10-4 M were more effective than the reduced cobalt NPs with a degradation yield of 81 ±1% and 77 ±2% respectively after 18 days. On the other hand, the results showed that the addition of 10-4 M of Cu2+ or Ag+ ions or the addition of Cu/SiO2 or Ag/SiO2 samples at 10-4 M of metal have an inhibitory effect on biphenyl biodegradation. However, Cu2+ and Ag+ ions were more toxic to the Rhodococcus erythropolis T902.1 bacteria than the respective Cu or Ag NPS anchored inside silica particles. Moreover, this work showed that in these <br />conditions, the activity of catechol 1, 2-dioxygenase (a critical enzyme in aromatic biodegradation pathway) was severely inhibited, whereas the presence of 10-4 M of Co2+ ions or Co/SiO2 sample stimulated the enzyme activity compared to the conditions without NPs. [less ▲]

Detailed reference viewed: 147 (62 ULg)
Full Text
Peer Reviewed
See detailPreliminary characterisation of residual biomass from Hibiscus sabdariffa calyces
Beye, Cheikh ULg; Aguedo, Mario ULg; Hiligsmann, Serge ULg et al

in African Journal of Biotechnology (2015), 14(36), 2683-2692

Hibiscus. sabdariffa calyces are mainly used for different agro-food and beverages applications. The residual biomass generated contains various useful substances that were extracted and characterized. It ... [more ▼]

Hibiscus. sabdariffa calyces are mainly used for different agro-food and beverages applications. The residual biomass generated contains various useful substances that were extracted and characterized. It contained 23% (w/w) soluble pectic material, a food additive, extracted with hot acidified water (80°C, pH=1.5) and precipitated with ethanol. The molecular weight (28.5 kDa and 109.7 kDa), the degree of methylation (70.6% and 44.3%) and the degree of acetylation (19.0% and 4.9%) were determined for two Senegalese cultivars (koor and vimto respectively). The effect of the extraction method on these parameters was highlighted. The residual lignocellulosic material (LCM) was chemically degraded to monosaccharides and the amount of glucose and xylose (39% of dry LCM) determined to estimate its potential as feedstock for biofuels production. However, an enzymatic degradation test revealed a recalcitrant LCM, as only 50 to 55% of its polymeric glucose content was degraded to monosaccharides without pretreatment. Xylooligosaccharides (XOS) are functional foods with a real market potential as prebiotics, characterized by their degree of polymerization (DP). The production of XOS synthetized by the enzymatic degradation of LCM was monitored. The results of analyses performed showed that XOS produced had mainly DP3 and DP4 values. [less ▲]

Detailed reference viewed: 147 (9 ULg)
Full Text
Peer Reviewed
See detailAmélioration de la biodégradation du biphényle par Rhodococcus erythropolis t902.1 en présence de Fe2O3 et de nanoparticules de fer encapsulées dans un xérogel de silice
Wannoussa, Wissal ULg; Hiligsmann, Serge ULg; Tasseroul, Ludivine ULg et al

in Déchets Sciences et Techniques (2015), 69

In this work, the effect of iron oxide particles Fe2O3 and iron nanoparticles encapsulated in a porous silica matrix (xerogel Fe/SiO2) was investigated on biphenyl biodegradation by the strain Rhodococcus ... [more ▼]

In this work, the effect of iron oxide particles Fe2O3 and iron nanoparticles encapsulated in a porous silica matrix (xerogel Fe/SiO2) was investigated on biphenyl biodegradation by the strain Rhodococcus erythropolis T902.1. After 18 days of incubation biodegradation yields of 75% and 85% were achieved respectively in presence of non-autoclaved or autoclaved xerogel Fe/SiO2 at 10-5 M iron. These results are 42 and 60 % higher than in standard conditions without nanoparticles. They suggest that the autoclave procedure lead to the release of some iron less anchored in the silica matrix. This study highlights that siderophore production by Rhodococcus erythropolis T902.1 would be related to the presence of iron nanoparticles in the culture. It suggests that the production of these strong chelating compounds decreases with increase of iron release from xerogel Fe/SiO2. Moreover, most of the surfactants synthesized by Rhodococcus erythropolis T902.1 which are glycolipids containing trehalose (hexose), would be linked to cell surface and not excreted in the culture medium; the biomass hexose content also increased by 85% in presence of iron nanoparticles. [less ▲]

Detailed reference viewed: 93 (20 ULg)
Full Text
Peer Reviewed
See detailLipopeptides as main ingredients for inhibition of fungal phytopathogens by Bacillus subtilis/amyloliquefaciens
Cawoy, H.; Debois, Delphine ULg; Franzil, Laurent ULg et al

in Microbial Biotechnology (2015), 8(2), 281-295

Summary: Some isolates of the Bacillus subtilis/amyloliquefaciens species are known for their plant protective activity against fungal phytopathogens. It is notably due to their genetic potential to form ... [more ▼]

Summary: Some isolates of the Bacillus subtilis/amyloliquefaciens species are known for their plant protective activity against fungal phytopathogens. It is notably due to their genetic potential to form an impressive array of antibiotics including non-ribosomal lipopeptides (LPs). In the work presented here, we wanted to gain further insights into the relative role of these LPs in the global antifungal activity of B.subtilis/amyloliquefaciens. To that end, a comparative study was conducted involving multiple strains that were tested against four different phytopathogens. We combined various approaches to further exemplify that secretion of those LPs is a crucial trait in direct pathogen ward off and this can actually be generalized to all members of these species. Our data illustrate that for each LP family, the fungitoxic activity varies in function of the target species and that the production of iturins and fengycins is modulated by the presence of pathogens. Our data on the relative involvement of these LPs in the biocontrol activity and modulation of their production are discussed in the context of natural conditions in the rhizosphere. © 2014 The Authors. Microbial Biotechnology published by John Wiley & Sons Ltd and Society for Applied Microbiology. [less ▲]

Detailed reference viewed: 28 (10 ULg)
Full Text
Peer Reviewed
See detailGenome-wide transcriptional analysis suggests hydrogenase- and nitrogenase-mediated hydrogen production in Clostridium butyricum CWBI 1009
Calusinska, Magda; Hamilton, Christopher; Monsieurs, Pieter et al

in Biotechnology for Biofuels (2015), 8(27), 1-16

Background: Molecular hydrogen, given its pollution-free combustion, has great potential to replace fossil fuels in future transportation and energy production. However, current industrial hydrogen ... [more ▼]

Background: Molecular hydrogen, given its pollution-free combustion, has great potential to replace fossil fuels in future transportation and energy production. However, current industrial hydrogen production processes, such as steam reforming of methane, contribute significantly to the greenhouse effect. Therefore alternative methods, in particular the use of fermentative microorganisms, have attracted scientific interest in recent years. However the low overall yield obtained is a major challenge in biological H2 production. Thus, a thorough and detailed understanding of the relationships between genome content, gene expression patterns, pathway utilisation and metabolite synthesis is required to optimise the yield of biohydrogen production pathways. Results: In this study transcriptomic and proteomic analyses of the hydrogen-producing bacterium Clostridium butyricum CWBI 1009 were carried out to provide a biomolecular overview of the changes that occur when the metabolism shifts to H2 production. The growth, H2-production, and glucose-fermentation profiles were monitored in 20 L batch bioreactors under unregulated-pH and fixed-pH conditions (pH 7.3 and 5.2). Conspicuous differences were observed in the bioreactor performances and cellular metabolisms for all the tested metabolites, and they were pH dependent. During unregulated-pH glucose fermentation increased H2 production was associated with concurrent strong up-regulation of the nitrogenase coding genes. However, no such concurrent up-regulation of the [FeFe] hydrogenase genes was observed. During the fixed pH 5.2 fermentation, by contrast, the expression levels for the [FeFe] hydrogenase coding genes were higher than during the unregulated-pH fermentation, while the nitrogenase transcripts were less abundant. The overall results suggest, for the first time, that environmental factors may determine whether H2 production in C. butyricum CWBI 1009 is mediated by the hydrogenases and/or the nitrogenase. Conclusions: This work, contributing to the field of dark fermentative hydrogen production, provides a multidisciplinary approach for the investigation of the processes involved in the molecular H2 metabolism of clostridia. In addition, it lays the groundwork for further optimisation of biohydrogen production pathways based on genetic engineering techniques. [less ▲]

Detailed reference viewed: 45 (6 ULg)
Full Text
Peer Reviewed
See detailThermophilic and cellulolytic consortium isolated from composting plants improves anaerobic digestion of cellulosic biomass: toward a microbial resource management approach
Kinet, Romain ULg; Destain, Jacqueline ULg; Hiligsmann, Serge ULg et al

in Bioresource Technology (2015)

A cellulolytic consortium was isolated from a composting plant in order to boost the initial hydrolysis step encountered in anaerobic digestion. Improvement of the cellulose degradation, as well as biogas ... [more ▼]

A cellulolytic consortium was isolated from a composting plant in order to boost the initial hydrolysis step encountered in anaerobic digestion. Improvement of the cellulose degradation, as well as biogas production, was observed for the cultures inoculated with the exogenous consortium. Metagenomics analyses pointed out a weak richness (related to the number of OTUs) of the exogenous consortium induced by the selective pressure (cellulose as sole carbon source) met during the initial isolation steps. Main microbial strains determined were strictly anaerobic and belong to the Clostridia class. During cellulose anaerobic degradation, pH drop induced a strong modification of the microbial population. Despite the fact that richness and evenness were very weak, the exogenous consortium was able to adapt and to maintain the cellulolytic degradation potential. This important result point out the fact that simplified microbial communities could be used in order to increase the robustness of mixed cultures involved in environmental biotechnology. [less ▲]

Detailed reference viewed: 61 (20 ULg)
Full Text
Peer Reviewed
See detailInvestigation of the links between mass transfer conditions, dissolved hydrogen concentration and biohydrogen production by the pure strain Clostridium butyricum CWBI1009
Beckers, L.; Masset, J.; Hamilton, C. et al

in Biochemical Engineering Journal (2015), 98

Fermentative hydrogen production has often been described as inhibited by its own gas production. In this work, hydrogen production by Clostridium butyricum was investigated in batch Biochemical Hydrogen ... [more ▼]

Fermentative hydrogen production has often been described as inhibited by its own gas production. In this work, hydrogen production by Clostridium butyricum was investigated in batch Biochemical Hydrogen Potential (BHP) tests and in a 2.5L anaerobic sequenced batch reactor (AnSBR) under different operating conditions regarding liquid-to-gas mass transfer. Through the addition of both stirring up to 400rpm and nitrogen sparging, the yields were enhanced from 1.6 to 3.1molH2molglucose -1 and the maximum hydrogen production rates from 140 to 278mLh-1. These original results were achieved with a pure Clostridium strain. They showed that hydrogen production was improved by a higher liquid-to-gas hydrogen transfer resulting in a lower dissolved hydrogen concentration in the culture medium and therefore in a lower bacterial inhibition. In addition, biohydrogen partitioning between the gas and the liquid phase did not conform to Henry's Law due to critical supersaturation phenomena up to seven-fold higher than the equilibrium conditions. Therefore, dissolved hydrogen concentration should be systematically measured instead of the headspace hydrogen partial pressure. A model was proposed to correlate H2 production yield and rate by the pure C. butyricum strain CWBI1009 with mass transfer coefficient KLa. [less ▲]

Detailed reference viewed: 45 (9 ULg)
Full Text
Peer Reviewed
See detailThe use of microorganisms of cassava retting for the production of pectinolytic enzymes
Kouhounde, Sonagnon Hermann Serge ULg; Adeoti, Kifouli; Delvigne, Frank ULg et al

in Journal of Microbiology Biotechnology and Food Sciences (2014), 4(3), 277-281

Detailed reference viewed: 20 (3 ULg)
Peer Reviewed
See detailWood digestion in lower termites: multidisciplinary approaches based on differential feeding
Bauwens, Julien ULg; Brasseur, Catherine ULg; Tarayre, Cédric ULg et al

Poster (2014, December)

Termites digestive tract and hindgut especially still holds many secrets despites hundreds of years of research. The complexity of the symbiotic microbial community and the contrast of physio-chemical ... [more ▼]

Termites digestive tract and hindgut especially still holds many secrets despites hundreds of years of research. The complexity of the symbiotic microbial community and the contrast of physio-chemical environments found in lower termites paunch are potentially the key point to explain the efficiency of ligno-cellulose digestion. Contribution of advancing technologies accelerates the progress of our knowledge in this field. Here, we present multiple approaches combining old and recent techniques used to highlight the effect of ligno-cellulosic compounds on termite gut and the role of populations from the symbiotic microbial community. Termites Reticulitermes flavipes (Kollar) submitted to various artificial diets showed variations in flagellates populations profile and enzymatic activities. Differential protein expression was investigated using 2D-DIGE MALDI-TOF-TOF and 2D-LC-MS/MS using high resolution orbitrap analyzer. Results from both proteomic experiments tend to support each-other and bring complementary points of view. The gel-free analysis resulted in highly contrasted identification of enzymes involved in ligno-cellulose digestion and metabolism. Finally, differential feeding experiments leaded to in vivo selection of different symbiotic communities. These communities were characterized following some metabolism assays and allowed the cultivation of diverse microbial consortia using media closely related to the respective artificial diets. This work provides relevant data on termite and associated microbial community response to alimentary diets. [less ▲]

Detailed reference viewed: 72 (11 ULg)
Full Text
Peer Reviewed
See detailValorisation et propriétés des substances humiques des lixiviats de décharge
Tahiri, Abdelghani ULg; Destain, Jacqueline ULg; Thonart, Philippe ULg et al

in Journal of Materials and Environmental Science (2014), 5 (S2)

Experiments were conducted in the laboratory with humic substances (HS) extracted from Landfill leachate and stable HS formulation called "Humifirst" (12% humic acid 3% and fulvic acid) from TRADECORP ... [more ▼]

Experiments were conducted in the laboratory with humic substances (HS) extracted from Landfill leachate and stable HS formulation called "Humifirst" (12% humic acid 3% and fulvic acid) from TRADECORP company's (Spain), in order to study their effects on root system development of birch and alder vitroplants in absence of interferences. The results obtained show that treatment with a low concentration (10 ppm) during induction/initiation phase may be slightly unfavorable to the formation of roots in alder but not in birch. While, in root elongation phase, there is an increase in the number of roots per shoot only in birch. Applied at 100 ppm during elongation phase, leachate HS inhibit completely rooting in alder and reduce lateral root density in birch. Under these conditions, the birch shoots grow yet more. These observations differ from those of Humifirst, which has no significant effect and no inhibition. The direct effects of leachate HS on root development and shoot growth vary from one species to another depending on the concentration. [less ▲]

Detailed reference viewed: 39 (10 ULg)