References of "Surdej, Jean"
     in
Bookmark and Share    
Full Text
Peer Reviewed
See detailAsymptotic solutions for the case of SIE lens models and application to the quadruply imaged quasar Q2237+0305
Wertz, Olivier ULg; Surdej, Jean ULg

in Monthly Notices of the Royal Astronomical Society (2014), 442(1), 428-439

Considering a small misalignment between a point-like source, a singular isothermal ellipsoid deflector and an observer, we derive to first order simple relations between the model parameters and the ... [more ▼]

Considering a small misalignment between a point-like source, a singular isothermal ellipsoid deflector and an observer, we derive to first order simple relations between the model parameters and the lensed image positions, and an expression for the time delay between pairs of opposed images which is analogue to the one previously derived for the case of ε - γ models. Combined with the first-order astrometric relations, we retrieve a simple expression for the time delays, in agreement with Witt, Mao & Keeton, which solely depends on the lensed image positions. The real advantage of using the first-order equations when dealing with symmetric gravitational lens systems is to directly test the validity of the adopted lens model without having to perform any accurate numerical fit. In this paper, we present in detail the calculations which lead to those relations between the singular isothermal ellipsoid lens model parameters and the lensed image positions. In addition, we model the well-known Einstein cross Q2237+0305 with three families of models: ε - γ, singular isothermal ellipsoid and non-singular isothermal ellipsoid plus shear, using a genetic algorithm from the Qubist Optimization Toolbox. We conclude that although the non-singular isothermal ellipsoid plus shear model shows the best agreement between the calculated and the observed image positions (〈 Δx〉 = 0.0026 arcsec), the more simple singular isothermal ellipsoid also leads to quite satisfactory and acceptable results (〈 Δx〉 = 0.0059 arcsec). © 2014 The Authors. Published by Oxford University Press on behalf of the Royal Astronomical Society. [less ▲]

Detailed reference viewed: 15 (3 ULg)
Full Text
Peer Reviewed
See detailPhysical properties of the WASP-67 planetary system from multi-colour photometry
Mancini, L.; Southworth, J.; Ciceri, S. et al

in Astronomy and Astrophysics (2014), 568

Context. The extrasolar planet WASP-67 b is the first hot Jupiter definitively known to undergo only partial eclipses. The lack of the second and third contact points in this planetary system makes it ... [more ▼]

Context. The extrasolar planet WASP-67 b is the first hot Jupiter definitively known to undergo only partial eclipses. The lack of the second and third contact points in this planetary system makes it difficult to obtain accurate measurements of its physical parameters. [less ▲]

Detailed reference viewed: 15 (1 ULg)
Full Text
Peer Reviewed
See detailPlanet Formation Imager (PFI): Introduction and technical considerations
Monnier, J. D.; Kraus, S.; Buscher, D. et al

in Proceedings of SPIE - The International Society for Optical Engineering (2014), 9146

Complex non-linear and dynamic processes lie at the heart of the planet formation process. Through numerical simulation and basic observational constraints, the basics of planet formation are now coming ... [more ▼]

Complex non-linear and dynamic processes lie at the heart of the planet formation process. Through numerical simulation and basic observational constraints, the basics of planet formation are now coming into focus. High resolution imaging at a range of wavelengths will give us a glimpse into the past of our own solar system and enable a robust theoretical framework for predicting planetary system architectures around a range of stars surrounded by disks with a diversity of initial conditions. Only long-baseline interferometry can provide the needed angular resolution and wavelength coverage to reach these goals and from here we launch our planning efforts. The aim of the "Planet Formation Imager" (PFI) project is to develop the roadmap for the construction of a new near-/mid-infrared interferometric facility that will be optimized to unmask all the major stages of planet formation, from initial dust coagulation, gap formation, evolution of transition disks, mass accretion onto planetary embryos, and eventual disk dispersal. PFI will be able to detect the emission of the cooling, newlyformed planets themselves over the first 100 Myrs, opening up both spectral investigations and also providing a vibrant look into the early dynamical histories of planetary architectures. Here we introduce the Planet Formation Imager (PFI) Project (www.planetformationimager.org) and give initial thoughts on possible facility architectures and technical advances that will be needed to meet the challenging top-level science requirements. © 2014 SPIE. [less ▲]

Detailed reference viewed: 6 (2 ULg)
Full Text
Peer Reviewed
See detailThe science case for the Planet Formation Imager (PFI)
Kraus, S.; Monnier, J.; Harries, T. et al

in Proceedings of SPIE - The International Society for Optical Engineering (2014), 9146

Among the most fascinating and hotly-debated areas in contemporary astrophysics are the means by which planetary systems are assembled from the large rotating disks of gas and dust which attend a stellar ... [more ▼]

Among the most fascinating and hotly-debated areas in contemporary astrophysics are the means by which planetary systems are assembled from the large rotating disks of gas and dust which attend a stellar birth. Although important work has already been, and is still being done both in theory and observation, a full understanding of the physics of planet formation can only be achieved by opening observational windows able to directly witness the process in action. The key requirement is then to probe planet-forming systems at the natural spatial scales over which material is being assembled. By definition, this is the so-called Hill Sphere which delineates the region of influence of a gravitating body within its surrounding environment. The Planet Formation Imager project (PFI; http://www.planetformationimager.org) has crystallized around this challenging goal: to deliver resolved images of Hill-Sphere-sized structures within candidate planethosting disks in the nearest star-forming regions. In this contribution we outline the primary science case of PFI. For this purpose, we briefly review our knowledge about the planet-formation process and discuss recent observational results that have been obtained on the class of transition disks. Spectro-photometric and multi-wavelength interferometric studies of these systems revealed the presence of extended gaps and complex density inhomogeneities that might be triggered by orbiting planets. We present detailed 3-D radiation-hydrodynamic simulations of disks with single and multiple embedded planets, from which we compute synthetic images at near-infrared, mid-infrared, far-infrared, and sub-millimeter wavelengths, enabling a direct comparison of the signatures that are detectable with PFI and complementary facilities such as ALMA. From these simulations, we derive some preliminary specifications that will guide the array design and technology roadmap of the facility. © 2014 SPIE. [less ▲]

Detailed reference viewed: 13 (1 ULg)
Full Text
Peer Reviewed
See detailProbing liquid mirror surface quality using the charge coupled device triangulation technique
Finet, François; Surdej, Jean ULg

in Optical Engineering : The Journal of the Society of Photo-Optical Instrumentation Engineers (2014)

Detailed reference viewed: 11 (6 ULg)
Full Text
Peer Reviewed
See detailPhysical properties and transmission spectrum of the WASP-80 planetary system from multi-colour photometry
Mancini, L.; Southworth, J.; Ciceri, S. et al

in Astronomy and Astrophysics (2013), 1312

WASP-80 is one of only two systems known to contain a hot Jupiter which transits its M-dwarf host star. We present eight light curves of one transit event, obtained simultaneously using two defocussed ... [more ▼]

WASP-80 is one of only two systems known to contain a hot Jupiter which transits its M-dwarf host star. We present eight light curves of one transit event, obtained simultaneously using two defocussed telescopes. These data were taken through the Bessell I, Sloan griz and near-infrared JHK passbands. We use our data to search for opacity-induced changes in the planetary radius, but find that all values agree with each other. Our data are therefore consistent with a flat transmission spectrum to within the observational uncertainties. We also measure an activity index of the host star of log R'_HK=-4.495, meaning that WASP-80A shows strong chromospheric activity. The non-detection of starspots implies that, if they exist, they must be small and symmetrically distributed on the stellar surface. We model all available optical transit light curves to obtain improved physical properties and orbital ephemerides for the system. [less ▲]

Detailed reference viewed: 20 (0 ULg)
Full Text
Peer Reviewed
See detailSearching for companions down to 2 AU from β Pictoris using the L'-band AGPM coronagraph on VLT/NACO
Absil, Olivier ULg; Milli, J.; Mawet, D. et al

in Astronomy and Astrophysics (2013), 559

Context. The orbit of the giant planet discovered around β Pic is slightly inclined with respect to the outer parts of the debris disc, which creates a warp in the inner debris disc. This inclination ... [more ▼]

Context. The orbit of the giant planet discovered around β Pic is slightly inclined with respect to the outer parts of the debris disc, which creates a warp in the inner debris disc. This inclination might be explained by gravitational interactions with other planets. <BR /> Aims: We aim to search for additional giant planets located at smaller angular separations from the star. <BR /> Methods: We used the new L'-band AGPM coronagraph on VLT/NACO, which provides an exquisite inner working angle. A long observing sequence was obtained on β Pic in pupil-tracking mode. To derive sensitivity limits, the collected images were processed using a principal-component analysis technique specifically tailored to angular differential imaging. <BR /> Results: No additional planet is detected down to an angular separation of 0.''2with a sensitivity better than 5 M[SUB]Jup[/SUB]. Meaningful upper limits (<10 M[SUB]Jup[/SUB]) are derived down to an angular separation of 0.''1, which corresponds to 2 AU at the distance of β Pic. [less ▲]

Detailed reference viewed: 40 (9 ULg)
Full Text
Peer Reviewed
See detailUse of the Fourier transform to derive the gravitational lens deflection angle
Wertz, Olivier ULg; Surdej, Jean ULg

in Monthly Notices of the Royal Astronomical Society (2013), 437

Knowing that the gravitational lens deflection angle can be expressed as the convolution product between the dimensionless surface mass density κ(x) and a simple function of the scaled impact parameter ... [more ▼]

Knowing that the gravitational lens deflection angle can be expressed as the convolution product between the dimensionless surface mass density κ(x) and a simple function of the scaled impact parameter vector x, we make use of the Fourier transform to derive its analytical expression for the case of mass distributions presenting a homoeoidal sym- metry. For this family of models, we obtain the expression of the two components of the deflection angle in the form of integrals performed over the radial coordinate ρ. In the limiting case of axially symmetric lenses, we obviously retrieve the well-known relation α(x)∝ M(≤ |x|)x/|x|^2. Furthermore, we derive explicit solutions for the deflection angle characterized by dimensionless surface mass density profiles such as κ ∝ (ρ^2c + ρ^2)^{−ν}; corresponding to the non-singular isothermal ellipsoid (NSIE) model for the particular case ν = 1/2. Let us insist that all these results are obtained without using the complex formal- ism introduced by Bourassa and Kantowski (1973,1975). Further straightforward applica- tions of this Fourier approach are suggested in the conclusions of the present work. [less ▲]

Detailed reference viewed: 92 (3 ULg)
Full Text
Peer Reviewed
See detailThe Gaia astrophysical parameters inference system (Apsis). Pre-launch description
Bailer-Jones, C. A. L.; Andrae, R.; Arcay, B. et al

in Astronomy and Astrophysics (2013), 559

The Gaia satellite will survey the entire celestial sphere down to 20th magnitude, obtaining astrometry, photometry, and low resolution spectrophotometry on one billion astronomical sources, plus radial ... [more ▼]

The Gaia satellite will survey the entire celestial sphere down to 20th magnitude, obtaining astrometry, photometry, and low resolution spectrophotometry on one billion astronomical sources, plus radial velocities for over one hundred million stars. Its main objective is to take a census of the stellar content of our Galaxy, with the goal of revealing its formation and evolution. Gaia's unique feature is the measurement of parallaxes and proper motions with hitherto unparalleled accuracy for many objects. As a survey, the physical properties of most of these objects are unknown. Here we describe the data analysis system put together by the Gaia consortium to classify these objects and to infer their astrophysical properties using the satellite's data. This system covers single stars, (unresolved) binary stars, quasars, and galaxies, all covering a wide parameter space. Multiple methods are used for many types of stars, producing multiple results for the end user according to different models and assumptions. Prior to its application to real Gaia data the accuracy of these methods cannot be assessed definitively. But as an example of the current performance, we can attain internal accuracies (RMS residuals) on F,G,K,M dwarfs and giants at G=15 (V=15-17) for a wide range of metallicites and interstellar extinctions of around 100K in effective temperature (Teff), 0.1mag in extinction (A0), 0.2dex in metallicity ([Fe/H]), and 0.25dex in surface gravity (logg). The accuracy is a strong function of the parameters themselves, varying by a factor of more than two up or down over this parameter range. After its launch in November 2013, Gaia will nominally observe for five years, during which the system we describe will continue to evolve in light of experience with the real data. [less ▲]

Detailed reference viewed: 41 (20 ULg)
Full Text
Peer Reviewed
See detailPhysical properties, transmission and emission spectra of the WASP-19 planetary system from multi-colour photometry
Mancini, L.; Ciceri, S.; Chen, G. et al

in Monthly Notices of the Royal Astronomical Society (2013), 436

We present new ground-based, multi-colour, broad-band photometric measurements of the physical parameters, transmission and emission spectra of the transiting extrasolar planet WASP-19b. The measurements ... [more ▼]

We present new ground-based, multi-colour, broad-band photometric measurements of the physical parameters, transmission and emission spectra of the transiting extrasolar planet WASP-19b. The measurements are based on observations of eight transits and four occultations through a Gunn i filter using the 1.54-m Danish Telescope, 14 transits through an R[SUB]c[/SUB] filter at the Perth Exoplanet Survey Telescope (PEST) observatory and one transit observed simultaneously through four optical (Sloan g[SUP]'[/SUP], r[SUP]'[/SUP], i[SUP]'[/SUP], z[SUP]'[/SUP]) and three near-infrared (J, H, K) filters, using the Gamma Ray Burst Optical and Near-Infrared Detector (GROND) instrument on the MPG/ESO 2.2-m telescope. The GROND optical light curves have a point-to-point scatter around the best-fitting model between 0.52 and 0.65 mmag rms. We use these new data to measure refined physical parameters for the system. We find the planet to be more bloated (R[SUB]b[/SUB] = 1.410 ± 0.017R[SUB]Jup[/SUB]; M[SUB]b[/SUB] = 1.139 ± 0.030M[SUB]Jup[/SUB]) and the system to be twice as old as initially thought. We also used published and archived data sets to study the transit timings, which do not depart from a linear ephemeris. We detected an anomaly in the GROND transit light curve which is compatible with a spot on the photosphere of the parent star. The starspot position, size, spot contrast and temperature were established. Using our new and published measurements, we assembled the planet's transmission spectrum over the 370-2350 nm wavelength range and its emission spectrum over the 750-8000 nm range. By comparing these data to theoretical models we investigated the theoretically predicted variation of the apparent radius of WASP-19b as a function of wavelength and studied the composition and thermal structure of its atmosphere. We conclude that: (i) there is no evidence for strong optical absorbers at low pressure, supporting the common idea that the planet's atmosphere lacks a dayside inversion; (ii) the temperature of the planet is not homogenized, because the high warming of its dayside causes the planet to be more efficient in re-radiating than redistributing energy to the night side; (iii) the planet seems to be outside of any current classification scheme. [less ▲]

Detailed reference viewed: 29 (7 ULg)
Full Text
See detailSmall-angle, high-contrast exoplanet imaging with the L-band AGPM vector vortex coronagraph now offered at the VLT
Mawet, Dimitri; Absil, Olivier ULg; Milli, Julien et al

in Shaklan, Stuart (Ed.) Techniques and Instrumentation for Detection of Exoplanets VI (2013, September 26)

In November 2012, we installed an L-band annular groove phase mask (AGPM) vector vortex coronagraph (VVC) inside NACO, the adaptive optics camera of ESO's Very Large Telescope. The mask, made out of ... [more ▼]

In November 2012, we installed an L-band annular groove phase mask (AGPM) vector vortex coronagraph (VVC) inside NACO, the adaptive optics camera of ESO's Very Large Telescope. The mask, made out of diamond subwavelength gratings has been commissioned, science qualified, and is now offered to the community. Here we report ground-breaking on-sky performance levels in terms of contrast, inner working angle, and discovery space. This new practical demonstration of the VVC, coming a few years after Palomar's and recent record-breaking lab experiments in the visible (E. Serabyn et al. 2013, these proceedings), shows once again that this new-generation coronagraph has reached a high level of maturity. [less ▲]

Detailed reference viewed: 28 (3 ULg)
Full Text
See detail1er Cours de Mécanique Analytique II (2012-14), Bac3 math & phys fichier pdf+vidéo
Surdej, Jean ULg

Learning material (2013)

Detailed reference viewed: 446 (54 ULg)
Full Text
Peer Reviewed
See detailClassification and environmental properties of X-ray selected point-like sources in the XMM-LSS field
Melnyk, Olga ULg; Plionis, M.; Elyiv, Andrii ULg et al

in Astronomy and Astrophysics (2013), 557(A81),

Detailed reference viewed: 43 (12 ULg)
Full Text
Peer Reviewed
See detailHigh-precision photometry by telescope defocusing - V. WASP-15 and WASP-16
Southworth, John; Mancini, L.; Browne, P. et al

in Monthly Notices of the Royal Astronomical Society (2013), 434

We present new photometric observations of WASP-15 and WASP-16, two transiting extrasolar planetary systems with measured orbital obliquities but without photometric follow-up since their discovery papers ... [more ▼]

We present new photometric observations of WASP-15 and WASP-16, two transiting extrasolar planetary systems with measured orbital obliquities but without photometric follow-up since their discovery papers. Our new data for WASP-15 comprise observations of one transit simultaneously in four optical passbands using GROND on the MPG/European Southern Observatory (ESO) 2.2 m telescope, plus coverage of half a transit from DFOSC on the Danish 1.54 m telescope, both at ESO La Silla. For WASP-16 we present observations of four complete transits, all from the Danish telescope. We use these new data to refine the measured physical properties and orbital ephemerides of the two systems. Whilst our results are close to the originally determined values for WASP-15, we find that the star and planet in the WASP-16 system are both larger and less massive than previously thought. [less ▲]

Detailed reference viewed: 29 (0 ULg)
Full Text
Peer Reviewed
See detailA detailed census of variable stars in the globular cluster NGC 6333 (M9) from CCD differential photometry
Arellano Ferro, A.; Bramich, D. M.; Figuera Jaimes, R. et al

in Monthly Notices of the Royal Astronomical Society (2013), 434

We report CCD V and I time series photometry of the globular cluster NGC 6333 (M9). The technique of difference image analysis has been used, which enables photometric precision better than 0.05 mag for ... [more ▼]

We report CCD V and I time series photometry of the globular cluster NGC 6333 (M9). The technique of difference image analysis has been used, which enables photometric precision better than 0.05 mag for stars brighter than V ˜ 19.0 mag, even in the crowded central regions of the cluster. The high photometric precision has resulted in the discovery of two new RRc stars, three eclipsing binaries, seven long-term variables and one field RRab star behind the cluster. A detailed identification chart and equatorial coordinates are given for all the variable stars in the field of our images of the cluster. Our data together with the literature V-data obtained in 1994 and 1995 allowed us to refine considerably the periods for all RR Lyrae stars. The nature of the new variables is discussed. We argue that variable V12 is a cluster member and an Anomalous Cepheid. Secular period variations, double-mode pulsations and/or the Blazhko-like modulations in some RRc variables are addressed. Through the light-curve Fourier decomposition of 12 RR Lyrae stars we have calculated a mean metallicity of [Fe/H][SUB]ZW[/SUB] = -1.70 ± 0.01(statistical) ± 0.14(systematic) or [Fe/H]_{text{UVES}}=-1.67 ± 0.01(statistical) ± 0.19(systematic). Absolute magnitudes, radii and masses are also estimated for the RR Lyrae stars. A detailed search for SX Phe stars in the Blue Straggler region was conducted but none were discovered. If SX Phe exist in the cluster then their amplitudes must be smaller than the detection limit of our photometry. The colour-magnitude diagram has been corrected for heavy differential reddening using the detailed extinction map of the cluster of Alonso-García et al. This has allowed us to set the mean cluster distance from two independent estimates; from the RRab and RRc absolute magnitudes, we find 8.04 ± 0.19 and 7.88 ± 0.30 kpc, respectively. [less ▲]

Detailed reference viewed: 41 (13 ULg)
Full Text
Peer Reviewed
See detailEstimating the parameters of globular cluster M 30 (NGC 7099) from time-series photometry
Kains, N.; Bramich, D. M.; Arellano Ferro, A. et al

in Astronomy and Astrophysics (2013), 555

<BR /> Aims: We present the analysis of 26 nights of V and I time-series observations from 2011 and 2012 of the globular cluster M 30 (NGC 7099). We used our data to search for variable stars in this ... [more ▼]

<BR /> Aims: We present the analysis of 26 nights of V and I time-series observations from 2011 and 2012 of the globular cluster M 30 (NGC 7099). We used our data to search for variable stars in this cluster and refine the periods of known variables; we then used our variable star light curves to derive values for the cluster's parameters. <BR /> Methods: We used difference image analysis to reduce our data to obtain high-precision light curves of variable stars. We then estimated the cluster parameters by performing a Fourier decomposition of the light curves of RR Lyrae stars for which a good period estimate was possible. We also derived an estimate for the age of the cluster by fitting theoretical isochrones to our colour-magnitude diagram (CMD). <BR /> Results: Out of 13 stars previously catalogued as variables, we find that only 4 are bona fide variables. We detect two new RR Lyrae variables, and confirm two additional RR Lyrae candidates from the literature. We also detect four other new variables, including an eclipsing blue straggler system, and an SX Phoenicis star. This amounts to a total number of confirmed variable stars in M 30 of 12. We perform Fourier decomposition of the light curves of the RR Lyrae stars to derive cluster parameters using empirical relations. We find a cluster metallicity [Fe/H][SUB]ZW[/SUB] = -2.01 ± 0.04, or [Fe/H][SUB]UVES[/SUB] = -2.11 ± 0.06, and a distance of 8.32 ± 0.20 kpc (using RR0 variables), 8.10 kpc (using one RR1 variable), and 8.35 ± 0.42 kpc (using our SX Phoenicis star detection in M 30). Fitting isochrones to the CMD, we estimate an age of 13.0 ± 1.0 Gyr for M 30. This work is based on data collected by MiNDSTEp with the Danish 1.54 m telescope at the ESO La Silla Observatory.The full light curves, an extract of which is shown in Table 2 are only available at the CDS via anonymous ftp to <A href="http://cdsarc.u-strasbg.fr">http://cdsarc.u-strasbg.fr</A> (ftp://130.79.128.5) or via <A href="http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/555/A36">http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/555/A36</A>Tables 8-10, and Figs. 6 and 9 are available in electronic form at <A href="http://www.aanda.org">http://www.aanda.org</A> [less ▲]

Detailed reference viewed: 54 (10 ULg)
Full Text
See detailHigh Contrast Imaging with the New Vortex Coronagraph on NACO
Mawet, D.; Absil, Olivier ULg; Girard, J. H. et al

in The Messenger (2013), 152

The installation and successful commissioning of an L'-band annular groove phase mask (AGPM) coronagraph on VLT/NACO is presented. The AGPM is a vector vortex coronagraph made from diamond sub-wavelength ... [more ▼]

The installation and successful commissioning of an L'-band annular groove phase mask (AGPM) coronagraph on VLT/NACO is presented. The AGPM is a vector vortex coronagraph made from diamond sub-wavelength gratings tuned to the L'-band. The vector vortex coronagraph enables high-contrast imaging at very small inner working angles (here 0.09 arcseconds, the diffraction limit of the VLT at L'), potentially opening up a new parameter space in high-resolution imaging. During technical and science verification runs, we discovered a late-type companion at two beamwidths from an F0V star, and imaged the inner regions of β Pictoris down to the previously unexplored projected radius of 1.75 astronomical units. The circumstellar disc of β Pic was also resolved from 1 to 5 arcseconds. These results showcase the potential of the NACO L'-band AGPM over a wide range of spatial scales. [less ▲]

Detailed reference viewed: 21 (6 ULg)
Full Text
Peer Reviewed
See detailMOA-2010-BLG-311: A planetary candidate below the threshold of reliable detection
Yee, J. C.; Hung, L.-W.; Bond, I. A. et al

in Astrophysical Journal (2013), 769(1), 77

We analyze MOA-2010-BLG-311, a high magnification (A_max>600) microlensing event with complete data coverage over the peak, making it very sensitive to planetary signals. We fit this event with both a ... [more ▼]

We analyze MOA-2010-BLG-311, a high magnification (A_max>600) microlensing event with complete data coverage over the peak, making it very sensitive to planetary signals. We fit this event with both a point lens and a 2-body lens model and find that the 2-body lens model is a better fit but with only Delta chi^2~140. The preferred mass ratio between the lens star and its companion is $q=10^(-3.7+/-0.1), placing the candidate companion in the planetary regime. Despite the formal significance of the planet, we show that because of systematics in the data the evidence for a planetary companion to the lens is too tenuous to claim a secure detection. When combined with analyses of other high-magnification events, this event helps empirically define the threshold for reliable planet detection in high-magnification events, which remains an open question. [less ▲]

Detailed reference viewed: 35 (11 ULg)
Full Text
Peer Reviewed
See detailLaboratory demonstration of a mid-infrared AGPM vector vortex coronagraph
Delacroix, Christian ULg; Absil, Olivier ULg; Forsberg, Pontus et al

in Astronomy and Astrophysics (2013), 553

Coronagraphy is a powerful technique to achieve high contrast imaging and hence to image faint companions around bright targets. Various concepts have been used in the visible and near-infrared regimes ... [more ▼]

Coronagraphy is a powerful technique to achieve high contrast imaging and hence to image faint companions around bright targets. Various concepts have been used in the visible and near-infrared regimes, while coronagraphic applications in the mid-infrared remain nowadays largely unexplored. Vector vortex phase masks based on concentric subwavelength gratings show great promise for such applications. We aim at producing and validating the first high-performance broadband focal plane phase mask coronagraphs for applications in the mid-infrared regime, and in particular the L band with a fractional bandwidth of ~16% (3.5-4.1 \mu m). Based on rigorous coupled wave analysis, we designed an annular groove phase mask (AGPM) producing a vortex effect in the L band, and etched it onto a series of diamond substrates. The grating parameters were measured by means of scanning electron microscopy. The resulting components were then tested on a mid-infrared coronagraphic test bench. A broadband raw null depth of 2 x 10^{-3} was obtained for our best L-band AGPM after only a few iterations between design and manufacturing. This corresponds to a raw contrast of about 6 x 10^{-5} (10.5 mag) at 2\lambda/D. This result is fully in line with our projections based on rigorous coupled wave analysis modeling, using the measured grating parameters. The sensitivity to tilt and focus has also been evaluated. After years of technological developments, mid-infrared vector vortex coronagraphs finally become a reality and live up to our expectations. Based on their measured performance, our L-band AGPMs are now ready to open a new parameter space in exoplanet imaging at major ground-based observatories. [less ▲]

Detailed reference viewed: 61 (21 ULg)